Plasma Physics and Radiation Technology
Download
Report
Transcript Plasma Physics and Radiation Technology
Plasmafysica &
Stralingstechnologie
Elementary Processes in Gasdischarges
Plasma & Materials Processing
Coherence & Quantum Technology
Science and Technology of Nuclear Fusion
Plasma Physics and Radiation Technology
• Plasma medium: common interest
to the PPRT thrust area
• Same fundamental knowledge
reservoir
• Plasmas investigated vary in
density and temperatures
• Intrinsic nonequilibrium medium
• Utilize fundamental knowledge in
various applications
• Very good example of applied
science
/ Applied Physics
Experiments and modeling approach
Plasma Physics and Radiation Technology
• Physics and chemistry on short
time and length scales
• Use of high power lasers for in
situ and real time plasma and
surface diagnostics
• Two groups:
Research on plasma-surface interaction
Plasma & Materials Processing (PMP)
Research on homogeneous plasma processes
Elementary Processes in Gasdischarges (EPG)
/ Applied Physics
Plasma Physics and Radiation Technology
High phase space density plasmas
Coherence & Quantum Technology
DeBroglie wavelength:
2 2
T
me k BT
Phase space density:
neT
3
Quantum Effects become important
/ Applied Physics
Plasma Physics and Radiation Technology
The track embraces research subjects such as:
• the generation of plasma’s
• plasma-surface interaction
(e.g. plasma deposition, plasma etching, etc.),
• plasma-accelerators, novel ion and electron sources
• laser cooling techniques and atomic optics
An important characteristic of the master track is the fundamental
approach of the themes as well as the research into new applications of
this broad field of research.
/ Applied Physics
Plasma Physics and Radiation Technology
General compulsory courses: 3 courses with a total of 10 ECTS
Compulsory and optional track courses: 17 ECTS consisting 2
compulsory courses of 8 ECTS in total and at least 11 ECTS of optional
track courses;
optional courses: each student has to choose a well-balanced set of
courses to a total of at least 14 ECTS points (about 3-4 courses);
external assignment project of 19 ECTS points (12 weeks) usually
outside TU/e;
graduation project of 60 ECTS points (1 year).
General outline of the Master programme
1st year
60 ECTS
2nd year
60 ECTS
/ Applied Physics
3 compulsory
courses
10ECTS
(Compulsory)
track courses
17ECTS
Optional
courses
14ECTS
Graduation project
60 ECTS
External
Assignment
19 ECTS
Coherence & Quantum Technology (CQT)
• Staff:
• Prof. Jom Luiten
• Prof. Ton van Leeuwen
• Dr. Servaas Kokkelmans
• Dr. Peter Mutsaers
• Dr. Edgar Vredenbregt
• Dr. Seth Brussaard
• Extreme states of matter: Ultra-cold & ultra-hot, plasmas & gases;
• Laser manipulation of atoms, electrons and ions;
• Atom, electron & ion beams for femto-nano science & engineering.
/ Applied Physics
Coherence & Quantum Technology (CQT)
Ultra-Cold Electron & Ion Beams:
• Laser cooling & trapping;
• Femtosecond (10-15 s) laser physics;
• Ultra-low temperature
(0.001 - 10 kelvin) plasmas;
• Femtosecond electron microscopy;
• Sub-nanometer ion beam drilling & milling.
Edgar Vredenbregt, Jom Luiten, Peter Mutsaers
/ Applied Physics
Ultracold plasmas
I
I
Electron temperature
e-
15 K
ions
V
Ultracold electron & ion beams
Taban et al., to be published
Taban et al., Phys. Rev. Special Topics, 11, 050102 (2008)
/ Applied Physics
Coherence & Quantum Technology (CQT)
Theory of Quantum Gases:
• Atoms trapped in an optical lattice;
• Superfluidity of ultra-cold (nano-kelvin)
Fermi and Bose gases;
• Quantum Plasmas & Beams.
Servaas Kokkelmans
Laser Wakefield Acceleration:
• Tera-watt “light bullet” laser physics;
• Extreme high-energy-density plasmas;
Seth Brussaard
/ Applied Physics
The poor man’s X-ray Free Electron Laser
VICI project Luiten:
Exploring extreme beam regimes
for femtosecond electron imaging
Phase space density = Beam Brightness
Luiten et al., PRL 93, 094802 (2004)
Claessens et al., PRL 95, 164801 (2005)
Van Oudheusden et al., JAP 102, 093501 (2007)
/ Applied Physics
Femtosecond structural dynamics
“The (bio)molecular movie...”
Elementary Processes in Gas Discharges (EPG)
• Staff:
•
•
•
•
•
•
•
•
Prof.dr.ir. Gerrit Kroesen
Prof.dr. Joost van der Mullen
Dr.ir. Eddie van Veldhuizen
Dr.ir. Peter Bruggeman
Dr.ir. Sander Nijdam
Dr.ir. Jan van Dijk
Prof.dr. Ute Ebert
Prof.dr. Marco Haverlag
• Light and photons: Efficient lamps and EUV sources
• Environmental technology: using plasmas for air / water cleaning
• Biomedical technology: sterilisation; new medical treatments
/ Applied Physics
Elementary Processes in Gas Discharges (EPG)
Plasmas:
Heaven and earth
/ Applied Physics
Elementary Processes in Gas Discharges (EPG)
Plasmas in lab and industry (1)
/ Applied Physics
Elementary Processes in Gas Discharges (EPG)
Plasmas in lab and industry (2)
Plasmas in lab and industry (2)
/ Applied Physics
Stereo-photography of Corona discharges
/ Applied Physics
S. Nijdam et al., Appl. Phys. Lett. 92 101502 (2008)
Plasma & Materials Processing (PMP)
• Staff:
• Dr.ir. Erwin Kessels
• Dr. Richard Engeln
• Dr. Adriana Creatore
• Dr. Ageeth Bol
• Prof.dr. Fred Roozeboom
• Prof.dr.ir. Richard van de Sanden
• Plasma physics and chemistry of plasma & materials processing;
• Advanced plasma and surface diagnostics
• Micro- and nano-engineering of functional materials
/ Applied Physics
Plasma & Materials Processing (PMP)
Physics and chemistry of
plasma & materials processing
Plasma chemistry
Ion/radical densities/fluxes
Energy distribution fcts.
Plasma surface interaction
Micro- and nano-engineering
of functional materials
Plasma enhanced CVD
Dry etching
Plasma-assisted ALD
Thin films & devices
Advanced plasma and surface diagnostics
Nd:YAG
M
Ellipsometry
Nonlinear surface spectroscopy
Novel surface diagnostics
(Laser) based gas phase diagnostics
to pump
THG
plasma
Dye (C440)
S
W
M
PMT
BBO
220 nm
LN2
M
W
BS
M
L
H2
440 nm
W
M
to pump
PMT
PMT
NO cell
/ Applied Physics
VUV
mono
M
In situ dangling bond detection during a-Si:H growth
H-abstraction
glass substrate
adsorption on DB
weakly-adsorbed state
insertion into Si-Si
1 µm
ZnO
mc-Si
Ag
High rate plasma deposition of amorphous and microcrystalline silicon:
Understanding the film growth mechanism
/ Applied Physics
Aarts et al. Appl. Phys. Lett. 90 161918 (2007)
Aarts et al. Phys. Rev. Lett. 95 166104 (2005)
-1
Absorption coefficient (cm )
In situ dangling bond detection during a-Si:H growth
Signal (a.u.)
Evanescent wave cavity ring down absorption
spectroscopy on dangling bonds
4
10
3
10
2
10
dangling bond
absorption
1
10
0
10
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Photon Energy (eV)
w\o analyte
10
w analyte (thin film)
1
0.1
0
/ Applied Physics
5
10
5
10 15 20 25 30
Time (s)
Aarts et al. Appl. Phys. Lett. 90 161918 (2007)
Aarts et al. Phys. Rev. Lett. 95 166104 (2005)
In situ dangling bond detection during a-Si:H growth
25
p-polarization
20
-6
Stop
Start
20 30 40
Time (s)
50
5
0
s-polarization
30
20
10
0
0
-2
10
6
5
4
3
2
1
0
60
10
11
50
45
40
35
30
25
20
0
0
Surface DBs (10 cm )
Optical Loss (10 )
-4
Optcal Loss (10 )
15
Si-radical growth pulse
/ Applied Physics
Aarts et al. Appl. Phys. Lett. 90 161918 (2007)
Aarts et al. Phys. Rev. Lett. 95 166104 (2005)
Surface dangling bond density
during growth ~5x1011cm-2
100 200 300 400 500 600
700 800
surface coverage ~5x10-4 !!
Thickness (nm)
Waar komen onze afstudeerders terecht?
• Lokale industrie (ASML, NXP, OTB-Solar, Fujifilm,
FEI)
• Instituten (TNO, ECN, etc.)
• Promotieplaatsen bij diverse universiteiten (ook
buitenland via de verschillende zeer internationaal
georienteerde groepen)
/ Applied Physics
Plasma Physics and Radiation Technology
• Plasma medium: common interest
to the PPRT thrust area
• Same fundamental knowledge
reservoir
• Plasmas investigated vary in
density and temperatures
• Intrinsic nonequilibrium medium
• Utilize fundamental knowledge in
various applications
• Very good example of applied
science
/ Applied Physics
Experiments and modeling approach