Slides - Indico

Download Report

Transcript Slides - Indico

Workshop on Muonic Atom Spectroscopy
21 October 2016
PSI
Atomic Parity Violation
to Search for New Physics
Klaus Jungmann, Van Swinderen Institute, University of Groningen
 Precision Experiments in Atomic Physics
 Sensitive to Fundamental Symmetries
 Few Privileged Systems: Single Valence Electron
 Unique Possibilities for sin2 W at Low Energies
m
VSI
 Nuclear Neutron Distribution Important
 Most Promising: Single Trapped Heavy Ion
Standard Model Tests
•
Standard Model (SM) of particle physics is
Best Theory we have
• Still large number of open questions
e.g. particle masses, origin of parity violation, ....
Direct:
Searches for New Particles
Indirect:
High Precision Measurements

Equivalent
Approaches
CERN e.g. LHC
e.g. Discovery of Higgs boson,..
also: Difference Matter-Antimatter …
VSI
Van Swinderen Institutea
e.g. Atomic Parity Violation (APV),
EDM searches, …..
Discrete Symmetries
C,P,T,CP,CPT
VSI
Parity
→ relatively large effects in some atoms and molecules
→ one valence electron atoms to extract precise constants
→ more complex systems to study e.g. anapole moments
VSI
Atomic Parity Violation
Extraction of Weinberg Angle
72P3/2
APV effect
72P1/2
Ra+
Ψe Ψn overlap
62D5/2
62D3/2 + ε' n' 2P3/2
E2
E1APV
Weak charge
72S1/2 + ε n2P1/2
→ Trapped single ion
VSI
Fortson, Phys. Rev. Lett. 70, 2383 (1993)
Atomic Parity Violation (APV)
Physics beyond the SM
QW = –N+(1–4 sin2θW)Z + rad. corr. + “new physics”
q
q
V
Z00’
→ neutrons N more important
e
A
e
→ get N distribution via nuclear electric charge distribution
→ start by measuring mean square electric charge radius <r2n>
→ we need overlap of e- with neutrons in e--atom
VSI
Atomic Parity Violation (APV)
Physics beyond the SM
QW = –N+(1–4
sin2θW)Z
+ rad. corr. + “new physics”
q
q
V
Z00’
Extra Z’ boson in SO(10) GUTs:
M 
 QW  2 N  Z  ae '   vd '   

M


2
Z
2
Z'
e
Londen en Rosner (1986)
Marciano en Rosner (1990)
Altarelli et al. (1991)
A
Bound on MZ’ from cesium APV
(84% confidence level, ξ= 52°Derevianko 2009)
Mz’> 1.3 TeV/c2
Bound (possible) on MZ’ from Ra+ APV
Mz’> 5 TeV/c2
VSI
The way to go!
(Tevatron MZ’> 0.82 TeV/c2)
(full LHC MZ’ ~4.5 TeV/c2)
e
Test of Standard Model
Electroweak Interaction
VSI
Test of Standard Model
Electroweak Interaction
VSI
Test of Standard Model
Electroweak Interaction
VSI
Test of Standard Model
Electroweak Interaction
S. Kumar, W. Marciano, Annu. Rev. of Nucl. Part. Sci. 63, 237 (2013)
H. Davoudiasl, Hye-Sung Lee, W. Marciano, arxiv. 1402.3620 (2014)
VSI
Test of Standard Model
Electroweak Interaction
Work in progress
S. Kumar, W. Marciano, Annu. Rev. of Nucl. Part. Sci. 63, 237 (2013)
H. Davoudiasl, Hye-Sung Lee, W. Marciano, arxiv. 1402.3620 (2014)
VSI
Test of Standard Model
Electroweak Interaction
S. Kumar, W. Marciano, Annu. Rev. of Nucl. Part. Sci. 63, 237 (2013)
H. Davoudiasl, Hye-Sung Lee, W. Marciano, arxiv. 1402.3620 (2014)
H. Davoudiasl, H. S. Lee and W. J. Marciano, Phys. Rev. D 92, 055005 (2015)
VSI
Atomic Parity Violation
Ba+ and Ra+
7P3/2
7P1/2
E2
6D5/2
6D3/2
E1APV
E1APV
QW 
k
Calculated from
atomic wavefunctions
7S1/2
Detailed calculations → stronger than Z3
S-S
S-D
Cs
0.9
Ba+
2.2
Fr
14.2
Ra+
46.4
Ra+ superior to measure APV …
50x more sensitive to APV than
current best measurement in Cs
Theory Calculations:
kRa = 46.4(1.4)
· 10-11 iea0 /N *
kCs = 0.8906(26) · 10-11 iea0 /N **
*L.W. Wansbeek et al., Phys. Rev. A 78, (2008)
**A. Derevianko et al., Phys. Rev. A 79, 013404 (2009)
VSI
Laser Spectroscopy in Ra+ ions
E1APV
QW 
k
Calculated from
wavefunctions
7p2P3/2
7p2P1/2
4.67(7)ns
8.57(12)ns
λ2=708 nm
λ1=468
nm
6d2D5/2
λ3=1079 nm
627(4)ms
λ0=828 nm
7s2S1/2
M. Nuñez Portela, et al., Appl. Phys. B, DOI:10.1007/s00340-013-5603-2 (2013)
O.O. Versolato, et al., Phys. Rev. A 82, 010501(R) (2010)
VSI
6d2D3/2
Laser Spectroscopy in Ra+ Ions
Probe of atomic theory & size and
shape of the nucleus
Probe of atomic wave functions
at the origin
Good agreement with theory at few % level
Theory improvement is in pipeline.
VSI
O.O. Versolato et al., Phys. Lett. A 375, 3130 (2012)
O.O. Versolato et al., Phys. Rev. A 82, 010501(R) (2010)
G.S. Giri et al., Phys. Rev. A 84, 020503(R) (2011)
1.486(75) fm2
vs.
1.277(129) fm2
VSI
L.W. Wansbeek et al, Phys. Rev. C 86, 015503 (2012)
Relative Ra Charge radii
L.W. Wansbeek et al, Phys. Rev. C 86, 015503 (2012)
VSI
 Radius 226Ra ≈ 5.7 fm
 Significant spread between models (up to few 10%)
 Need at least one calibration point, best 226Ra
Muon lives mostly inside Heavy Nucleus
208Pb
Kessler, PRC (1975);
Schaller, Z. Phys. 56, s48 (1992)
m
VSI
Status of Theory
 Atomic calculations:
1 PhD student away from necessary sub-% precision
 Parity effect calculations:
nuclear charge radius needed at few-% accuracy
 Parity effect calculations:
- charge radius still sufficient
- neutron distribution follows suffieciently well
VSI
Ra+ measurements to test Atomic Theory
Hyperfine Structure:
Probe of atomic wave functions at the origin
Isotope Shifts:
% level agreement with theory
(Safronova, Sahoo, Timmermans et al.)
VSI
64
60
Probe of S-D E2 matrix element
56
Excited State Lifetimes:
Fluorescence signal at 468 nm [a.u.]
Probe of atomic theory & size and shape of the
nucleus
0
0.2
0.4
0.6
0.8
Time since beam off [sec]
Single Ba+ ion
Ra+
7p2P3/2
E1APV
QW 
k
To be measured
λ5=802 nm
7p2P1/2
λ4=382 nm
λ2=1079 nm
6d2D5/2
6d2D3/2
λ1=468 nm
λ0=828 nm
7s2S1/2
5mm
6p2P3/2
Hyperbolic Paul Trap
●
localize one ion within one wavelength
●
electron shelving
●
large volume
6p2P1/2
λ4=455 nm
Ba+
8 ns
λ5=615 nm
λ2=649 nm
λ0=2050 nm
6s2S1/2
5d2D5/2
5d2D3/2
λ1=493
nm
Ba+ : Precursor to Ra+
VSI
6.4 ns
Hyperbolic Paul trap
NNV subatomic Lunteren 2014-11-05
23
2P
2P3/2
1/2
650 nm
494
nm
2S
1/
Ba+
VSI
2D
2D5/
3/
2
2
5 mm
23
Detection methods
EMCCD camera
10 µm
& PMT
VSI
Ba+ Experiment : Lifetime D5/2
6p2P3/2
6p2P1/2
λ4=455 nm
6.4 ns
Ba+
8 ns
λ5=615 nm
λ2=649 nm
5d2D3/2
λ1=493
nm
λ0=2050 nm
6s2S1/2
VSI
5d2D5/2
Ba+ Experiment : Lifetime D5/2
6p2P3/2
6p2P1/2
λ4=455 nm
6.4 ns
Ba+
8 ns
λ5=615 nm
λ2=649 nm
5d2D3/2
λ1=493
nm
λ0=2050 nm
6s2S1/2
VSI
5d2D5/2
Ba+ Experiment : Lifetime D5/2
6p2P3/2
6p2P1/2
λ4=455 nm
6.4 ns
Ba+
8 ns
λ5=615 nm
λ2=649 nm
5d2D3/2
λ1=493
nm
λ0=2050 nm
6s2S1/2
Determine
matrix elements
τ≈27.6(8)s
1mm
VSI
5d2D5/2
Ba+ 5 2D5/2 Level
Lifetime
2P
3/2
2P
1/2
τ ≈ 30 s
Ba+
2D
5/2
2D
3/2
2S
1/2
PMT count rate (cnt/s)
EMCCD
camera
PMT
signal
Time (s)
VSI
Ba+ 5 2D5/2 Level
Lifetime
2P
3/2
2P
1/2
τ ≈ 30 s
Ba+
2D
5/2
2D
3/2
2S
1/2
• Fitted 2D5/2 level lifetime and shelving rate
• No prominent difference with single ion runs
• Investigating systematics
1 ion shelved
VSI
2 ions shelved
all ions
shelved
Mohanty et al. (in preparation)
Ba+ Experiment : Lifetime D5/2
6p2P3/2
6p2P1/2
λ4=455 nm
6.4 ns
Ba+
8 ns
λ5=615 nm
5d2D5/2
λ2=649 nm
5d2D3/2
λ1=493
nm
λ0=2050 nm
Ba+ D5/2 state lifetime
6s2S1/2
D5/2 = 27.6(8) s
VSI
Two-photonTransitions in single Ba+
• Ba+ level scheme : 8 Zeeman sublevels.
• Two photon transition : Raman resonance (δR)
• Strongly dependent on:
– Mangetic field strength and direction
– Laser light polarization
B ll E
PMT count rate (counts/sec)
PMT count rate (counts/sec)
B  E
Offset Frequency of 650nm (MHz)
Offset Frequency of 650nm (MHz)
→ Signals also with blue detuning!
VSI → Due to rapid cooling laser frequency switching
Ba+ spectroscopy
•
62P3/2
2D
level lifetime
Electron shelving
5/2
62P1/2
• Transition frequencies
Line shape analysis
650 nm
52D5/2
52D3/2
494 nm
2052 nm
62S1/2
138Ba+
VSI
Modeling of Line Shape
|2P1/2⟩
Γ1
• Optical Bloch equation
3 level example
Δ1
γ
Γ2
|4⟩
|3⟩
Δ2
γ
Ω2
Ω1
|8⟩
|7⟩
|6⟩
|2S
1/2⟩
|2⟩
|5⟩
γc
|1⟩
|2D3/2⟩
Ba+
VSI
Ω1, Ω2 Rabi frequencies
(laser power)
Γ = Γ1 + Γ2 relaxation rate
γ = Γ/2
decoherence rate
Δ1, Δ2
γc
laser linewidth
laser detunings
Line Shapes and Polarization
494 nm linear polarized B
650 nm circularly polarized
signal
• Zeeman sublevels: 8 level system
|1⟩⟨5|
PMT
Magnetic field B
Laser polarization
|2P1/2⟩
|2⟩⟨8|
650 nm laser frequency offset
|4⟩
|3⟩
|7⟩
|6⟩
|2⟩
|2S1/2⟩
|1⟩
|5⟩
|2D3/2
⟩
PMT
|8⟩
signal
494 nm linear polarized B
650 nm circularly polarized
|1⟩⟨8|
650 nm laser frequency offset
VSI
|2⟩⟨5|
Transition frequencies
2P
2P
Ba+
3/2
1/2
650 nm
494 nm
2D
5/2
2D
3/2
2S
1/2
494 nm
494 nm
laser detuning varied
Light
shift?
650 nm
Ba Transition
Frequency [MHz]
One-photon peak
frequency (MHz)
650
+ laser intensity varied
138 nm
• No, correction in transition frequencies
for Ω2 dependent shift consistent with
2° rotation of B-field
879.5
[Karlsson & Litzén 1999]
This work
879.0
607 426 290 (100)
607 426 262.5 (0.2)
461 311 880 (100)
878.5
461 311 878.5 (0.1)
6s 2S1/2 – 6p 2P1/2
5d 2D3/2 – 6p 2P1/2
Expected
6d 2S1/2 – 5p 2D3/2
Frequency 650 nm laser − 461 311 000 MHz
146 114 384.0(0.1)
---
461 311 878.
00
1
2
3
4
Power
650laser
nm laser
(Ω2 / Ω2,sat)MHz
Frequency
650 nm
− 461 311 000
2
2
• Data fit to optical Bloch equation model
• Extract
transition frequencies with 100 kHz accuracy
Dijck et al., Phys. Rev. A 91, 060501(R) (2015)
VSI
5
Atomic Parity Violation
72P3/2
72P1/2
Ba+/Ra+
62D5/2
62D3/2 + ε' n' 2P3/2
E2
E1APV
mF = +1/2
Interference:
differential light shift
B0
|E2|2
E2 . E1APV
ω0
72S1/2 + ε n2P1/2
mF = –1/2
ω0
ω0 + Δdiff
RF
spectroscopy
B0
• 2D5/2 lifetime
→ matrix elements
• Bloch equations → light shift
VSI
N. Fortson, Phys. Rev. Lett. 70, 2383 (1993)
J. A. Sherman arXiv:0907.0459v1 ( 2009)
Radium for APV
Accuracy of single ion Experiment
Coherence
Time
Projected
Accuracy
Measurement
Time
Ba+
80 sec
0.2%
1.1 day
Ra+
0.6 sec
0.2%
1.4 day
→ 10 days for 5 fold improvement over Cs
VSI
Light Shifts in Ba+ ion
•
•
•
•
494nm light linearly polarised in vertical direction
650nm light circularly polarised
light shift laser polarised in the horizontal direction
Magnetic field of 510μT applied in Bz - direction
VSI
Light Shifts measured in Ba+ ion
• Measured Raman dip spectrum
for the 5d2D3/2 - 6p2P1/2
transition
• 494nm light linearly polarised
in vertical direction along z-axis
• 650nm light circularly polarised
• light shift laser polarised in the
horizontal direction
• magnetic field of 510μT along
Bz-direction
• Detunings were large compared
to the power broadened
linewidth
VSI
Light Shifts measured in Ba+ ion
• Measured Raman dip spectrum
for the 5d2D3/2 - 6p2P1/2
transition
• 494nm light linearly polarised
in vertical direction along z-axis
• 650nm light circularly polarised
• light shift laser polarised in the
horizontal direction
• magnetic field of 510μT along
Bz-direction
• Detunings were large compared
to the power broadened
linewidth
VSI
Light Shifts measured in Ba+ ion
•
•
•
Scaling of light shift with the detunings of light shifting light
Δ νLS= 0.16(3)GHz2.1/ΔLS , ΔLS is detuning of light shifting light
Polarisation with respect to quantization axes i.e. magnetic field are important
blue shift
red shift
VSI
Optically resolved Zeeman states in
presence of light shift laser
•
•
•
•
•
•
Measured Raman dip spectrum of 5d 2D3/2 - 6p 2P1/2 transition
Light shift laser detuned by +31(2)GHz from resonance
Light shift laser linearly polarised in the vertical direction
Magnetic field of 510μT along BZ
Zeeman components better resolved in presence of light shift laser light.
Low power of 1μW at 494nm enables resolution of Raman transitions.
VSI
Different detunings of the
light shift laser
• Resolved 6s 2S1/2–5d 2D3/2
transition
• Detunings varied from
+13(2) GHz to +38(2) GHz
• Light shift laser light
linearly polarised in the
vertical direction
• Magnetic field of 400μT
along Bx
• Light at λ494 and λ650 linearly
and circularly polarised
respectively.
VSI
Polarisation angles of light shift laser
• Measured spectra of 5d 2D3/2–6p2P1/2
transition in absence of light shift
laser
• Resolved 6s 2S1/2–5d 2D3/2 transition
in presence of light shift laser
• Light shift laser light linearly
polarised in the vertical direction
• Light shift laser detuned by +31(2)
GHz from resonance
• Light at λ494 and λ650 is linearly and
circularly polarised respectively.
VSI
Spectroscopy on
+
Ba
•
138Ba+
•
Single 138Ba+ ion spectroscopy
5d 2D5/2 state lifetime
Transition Frequencies
single ion trapping setup & techniques → work also for Ra+
- Towards measuring Atomic Parity Violation
τD 5/ 2 ~27. 6 (8)s
•
•
ν (5d2D3/2 - 6p2P1/2 ), ν (6s2S1/2 – 5d2D3/2 )
and ν (6s2S1/2 - 6p2P1/2 )
several 100 times improved
Quantification of Light shifts measurements in progress
Spectroscopic measurements with Ba+ ion
- enables determination of atomic matrix elements
- towards measurement of APV in both Ba+ and Ra+
VSI
Light Shifts
Δ νLS= 0.16(3)GHz2.1/ΔLS
Fundamental Physics
Applied Physics
go hand in hand
VSI
Radium has a Great Potential for
 Fundamental Physics
 a Clock
VSI
+
Ra
Ion Atomic Clock
 Narrow Transition, Ultra Stable Lasers
 Low Sensitivity to external fields (for I=3/2)
 Time Variation of Fine Structure Constant
 Major Systematics: Quadrupole Shift
<10-18
223Ra+
Atomic Clock
Note:
10-18 corresponds to 1 cm height difference
KVI
Groningen University
Ra+ Clock
LaserLaB
VU Amsterdam
Al+ Clock
2x280 km
Koelemeij, Eikema, Ubachs et al.
VSI
Willmann, Dijck, Jungmann et al.
→ TJ Pinkert et al., Applied Optics 54, 728 (2015)
e.g. clock signal exchange significantly better than GPS
.
Sensitivity to 
O.O. Versolato et al., Phys. Rev. A 83, 043829 (2011)
VSI
Status Atomic Parity Violation in Ba+/Ra+
• Developing Ba+/Ra+ single ion trapping setup & techniques
• Calculations tested
• Response Λ-system to two lasers described by optical Bloch Model
Improved measurement of transition frequencies
Light shift measurements started
 Need nuclear charge radius to move on with determination sin2W
Ion Trapping
Klaus Jungmann
Lorenz Willmann
Mayerlin Nuñez Portela
Andrew Grier
Oliver Böll
Olivier Grasdijk
VSI
Nivedya Valappol
Amita Mohanty
Elwin Dijck
Van Swinderen Institute, University of Groningen
SUMMARY
Parity Violation in Ba+ and Ra+
 Heavy one-e- systems to measure sin2w
 Atomic spectroscopy on its way
 Theory one PhD student away
 Neutron sistribution/nuclear charge radii
needed consistent and to <10%
 Enable to accees physics beyond SM
(& nuclear properties)
THANK YOU !
VSI