Simulation and the Monte Carlo method
Download
Report
Transcript Simulation and the Monte Carlo method
fNIRS Image reconstruction.
Analysis of the vascular
compartamentalization
Dr. Felipe Orihuela-Espina
Initial proposition: 2013
Current version: 2016
What is image reconstruction?
Image reconstruction and the inverse
problem
Figure from: [OrihuelaEspina, F. (2005) PhD thesis]
© 2013-6. Dr. Felipe Orihuela-Espina
2
What is image reconstruction?
© 2013-6. Dr. Felipe Orihuela-Espina
3
Research Question and Hypothesis
RQ: From which head compartment does
the haemodynamic signal comes from?
Hypothesis: After removal of the
extracranial systemic hemodynamic
component, the intracranial hemodynamic
signal comes from the microvasculature of
the cortex, but sensing on top of a big vein
or artery sensibly distorts the remitted
spectra.
© 2013-6. Dr. Felipe Orihuela-Espina
4
Aims and goals
Characterization of the spectral response
associated to the vascular
compartmentalization
© 2013-6. Dr. Felipe Orihuela-Espina
5
Contributions
Computing:
Enhanced reconstruction algorithms.
Neuroimaging:
Enhanced understanding of the
haemodynamic signal origin.
© 2013-6. Dr. Felipe Orihuela-Espina
6
Associated topics
Computing:
Inverse problems,
Regularization
Monte Carlo methods
Multidisciplinary:
Neuroscience and functional neuroimaging
Histophysiology
Physics and Optics
Diffusion theory
© 2013-6. Dr. Felipe Orihuela-Espina
7
A few challenges
Convincing the academy that this is computer
science and not “maths”
Inverse ill-problems and ill-posed problems
require a steep learning curve
Simulations are computationally burdensome,
…and a lot of them are required.
The complexity of the anatomical and optical
model
© 2013-6. Dr. Felipe Orihuela-Espina
8
Other considerations
Possible co-direction: N/A
Previous and/or current work in the group:
Felipe Orihuela’s thesis [2005]
Javier Herrera’s thesis [2013-2017]
© 2013-6. Dr. Felipe Orihuela-Espina
9
Suggested Workflow
PENDING
© 2013-6. Dr. Felipe Orihuela-Espina
10
Monte Carlo software
mcml –quizás el estándar de oro-
Lihong Wang, Steven L. Jacques, and Liqiong Zheng. Mcml - monte carlo modeling of light transport in multi-layered tissues. Computer Methods
and Programs in Biomedicine, 47:131–146, 1995.
MCX,
Qianqian Fang and David A. Boas. Monte carlo simulation of photon migration in 3d turbid media accelerated by graphics processing units.
Optics Express, 17(22):20178–20190, 2009
penMesh
Andreu Badal, Iacovos Kyprianou, Diem Phuc Banh, Aldo Badano, and Josep Sempau. Penmesh A monte carlo radiation transport simulation in
a triangle mesh geometry. IEEE Transactions on Medical Imaging, 28(12):1894–1901, DEC 2009
CUDAMCML,
Erik Alerstam, William Chun Yip Lo, Tianyi David Han, Jonathan Rose, Stefan Andersson-Engels, and Lothar Lilge. Next-generation acceleration
and code optimization for light transport in turbid media using gpus. Biomedical Optics Express, 1(2):658–675, SEP 2010.
O3MC,
Alexander Doronin and Igor Meglinski. Online object oriented monte carlo computational tool for the needs of biomedical optics. Biomedical
Optics Express, 2(9):2461–2469, SEP 2011.
GEANT
S. Agostinelli and J. et al Allison. Geant4- a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 506(3):250–303, JUL 2003.
y su subproyecto GATE
D. Sarrut, M. Bardiés, N. Boussion, N. Freud, S. Jan, J. M. Létang, G. Loudos, L. Maigne, S. Marcatili, T. Mauxion, P. Papadimitroulas, Y. Perrot, U.
Pietrzyk, C. Robert, D. Schaart, D. Visvikis, and I. Buvat. A review of the use and potential of the gate monte carlo code for radiation therapy and
dosimetry applications. Medical Physics, 41(6):064301, 2014
MOCARTS
Bibiana Cuervo-Soto, Javier Herrera-Vega, J. Alfonso del C. Garcés-Báez Carlos Treviño-Palacios Felipe Orihuela-Espina. MOCARTS: A
lightweight radiation transport simulator for easy handling of complex sensing geometries. In 13th International Symposium on Biomedical
Imaging (ISBI’16), pages 377–380, 2016.
© 2013-6. Dr. Felipe Orihuela-Espina
11
Starting literature
About… fNIRS:
[Villringer 1997] Villringer, A. & Chance, B. Non-invasive optical spectroscopy and
imaging of human brain function Trends in Neuroscience, 1997, 20, 435-442
[Strangman 2002] Strangman, G.; Boas, D. A. & Sutton, J. P. Non-Invasive
Neuroimaging Using Near-Infrared Light Biological Psychiatry, 2002, 52, 679-693
[OrihuelaEspina 2010] Orihuela-Espina, F.; Leff, D. R.; James, D. R. C.; Darzi, A. W. &
Yang, G.-Z. Quality control and assurance in functional near infrared spectroscopy
(fNIRS) experimentation Physics in Medicine and Biology, 2010, 55, 3701-3724
[Ferrari 2012] Ferrari, M. & Quaresima, V. A brief review on the history of human
functional near-infrared spectroscopy (fNIRS) development and fields of application
Neuroimage, 2012, 63, 921-935
[Boas 2014] Boas, D. A.; Elwell, C. E.; Ferrari, M. & Taga, G. Twenty years of
functional near-infrared spectroscopy: introduction for the special issue Neuroimage,
2014, 85, 1-5
[Scholkmann 2014] Scholkmann, F.; Kleiser, S.; Metz, A. J.; Zimmermann, R.; Pavia, J.
M.; Wolf, U. & Wolf, M. A review on continuous wave functional near-infrared
spectroscopy and imaging instrumentation and methodology Neuroimage, 2014, 85,
6-27
© 2013-6. Dr. Felipe Orihuela-Espina
12
Starting literature
About… Image reconstruction:
[Arridge 1997] Arridge, S. R.; Hebden, J. C. & Delpy, D. T. Optical imaging in medicine:
II. Modelling and reconstruction Physics in Medicine and Biology, 1997, 42, 841-853
[Arridge 2011] Arridge, S. R. Methods in diffuse optical imaging Philosophical
Transactions of the Royal Society A - Mathematical, Physical and Engineering
Sciences, 2011, 369, 4558-4576
[Deghani 2009] Dehghani, H.; White, B. R.; Zeff, B. W.; Tizzard, A. & Culver, J. P.
Depth sensitivity and image reconstruction analysis of dense imaging arrays for
mapping brain function with diffuse optical tomography Applied Optics, 2009, 48,
D137-D143
[Deghani 2009b] Dehghani, H.; Srinivasan, S.; Pogue, B. W. & Gibson, A. P. Numerical
modelling and image reconstruction in diffuse optical tomography Philosophical
Transactions of the Royal Society of London. Serie A, 2009, 367, 3073-3093
[Wu 2015] Wu, X.; Eggebrecht, A. T.; Ferradal, S. L.; Culver, J. P. & Dehghani, H. Fast
and efficient image reconstruction for high density diffuse optical imaging of the human
brain Biomedical Optics Express, 2015, 6, 4567-4584
[Tesis de Javier?]
© 2013-6. Dr. Felipe Orihuela-Espina
13
Starting literature
About… Monte Carlo:
[Reuven 2008] Reuven Y. Rubinstein and Dirk
P. Kroese. Simulation and the Monte Carlo
method. Wiley-Interscience, 2nd ed. edition,
2008
[Mackay 1998] D. J. C. Mackay. Introduction
to monte carlo methods, 1998
© 2013-6. Dr. Felipe Orihuela-Espina
14