X Ray Transport / Optics / Diagnostics Overview Richard M. Bionta
Download
Report
Transcript X Ray Transport / Optics / Diagnostics Overview Richard M. Bionta
X Ray Transport / Optics /
Diagnostics Overview
Richard M. Bionta
Facility Advisory Committee Meeting
April 29, 2004
Electron
Transport
Electron
Dump
Near
Experimental
Hall
Linac
Undulator
Hall
Far
Experimental
Hall
Front End
Enclosure
X-Ray
Tunnel
April 29, 2004
XTOD Overviewe
Richard M. Bionta
[email protected]
XTOD Goals
Provide vacuum path from end of undulator
to hutches in Far Hall with capability of
attenuating beam to synchrotron levels.
Provide necessary diagnostics to
commission the LCLS and monitor its
performance.
Demonstrate detection and optical
techniques that would be useful to users.
April 29, 2004
XTOD Overviewe
Richard M. Bionta
[email protected]
X-ray Transport, Optics, and Diagnostics Layout
NEH
FEE
Flipper Mirror
FEH
Tunnel
Experiments:
Atomic Physics
Front End
FEL Measurements
Enclosure
FEH Optics:
Fast Close Valve & Experiments:
Pulse-Split-&-Delay
Low Power Imaging
Slits
Monochrometer
High Power Imaging
Attenuators
Spectrometer
Shielding
Experiments:
Calorimeter
Optics
Warm Dense Matter
April 29, 2004
XTOD Overviewe
Richard M. Bionta
[email protected]
Experiments
Optics
Structual Bio
Nano-scale
Femtochem
Calculated Peak FEL Fluence along Z
Peak Fluence, J/cm2
FEH
FEE-NEH
10
0.1
0.01
1
0
100
200
300
400
Distance from undulator exit (m)
The fluence decrease with distance and photon energy, and ranges from 30 J cm-2 to <
0.01 J cm-2
April 29, 2004
XTOD Overviewe
Richard M. Bionta
[email protected]
Energy depositions near melt cause
damage
time (ps)
100
pressure (kbar)
90
density (g/cc)
80
90
2.45
Dt = 50 ps
70
P
60
Dt = 50 ps
0
50
2 kbar
40
-40
0
30
2.05
0
5
depth (µm)
20
5
depth (µm)
10
Be B4
C
Pressure and density in a Si mirror
(surface melted), for 2 keV photons
near undulator.
Pressure in a Multilayer of Be B4C. 8 keV photons
in Near Hall
April 29, 2004
XTOD Overviewe
Transverse distance (µm)
Richard M. Bionta
0
1
2
3
4
5
[email protected]
LCLS fluence melts many materials in a
single pulse
Grazing incidence may help
FEE
NEH
FEH
Normal incidence, fluence to melt (without
latent heat of melting).
The gains (reduced dose) available by
operating below grazing incidence are ~ 10.
Based on melt damage, the FEE and NEH require the use of low-Z materials and / or
grazing incidence geometry. The FEH allows some standard solutions.
April 29, 2004
XTOD Overviewe
Richard M. Bionta
[email protected]
Front End Enclosure/
Hutch 1 Layout
NEH Hutch 1
Access
Shaft
PPS
Access
Shaft
4'
Muon
shield
PPS
Spectrometer,
Total Energy
Solid
Attenuator
Direct Imager
Indirect Imager
Slit A
Slit B
Photon
Beam
Fast
close
valve
Electron
Beam
April 29, 2004
XTOD Overviewe
13'
Muon
shield
Windowless
PPS Ion
Chamber
Gas Attenuator
Front End Enclosure
Electron Dump
Richard M. Bionta
[email protected]
Adjustable High-Power Slits
Intended to intercept spontaneous
beam, not FEL beam -- but will come
very close, so peak power is an issue
Treat jaw as mirror (high-Z material)
Concept requires long jaws with
precision motion
April 29, 2004
XTOD Overviewe
Richard M. Bionta
[email protected]
Windowless Gas Attenuator – 10 m system
Gas Inlet
Window
Region of highest pressure
Vacuum pumps
Photon
Energy eV
800
8260
April 29, 2004
XTOD Overviewe
Vacuum pumps
Gas
N
Ar
Pressure, torr Transmission
1.65
10
10-4
0.2
Richard M. Bionta
[email protected]
Gas Attenuator – Window Options
Photon Energy eV
FEL FWHM mm
800
8260
1.252
0.176
Open, tilted, nozzle
High gas flow
Rotating slots
Synchronization
Plasma Window
Gas flow
April 29, 2004
XTOD Overviewe
Richard M. Bionta
[email protected]
Z = 90 m
LCLS Commissioning
Measuring Gain vs z.
Kick beam at z to stop FEL gain
Measure at end of undulator
Measure Spectra with resolution < r = 5-15x10-4
But with bandwidth of 0.5%
Measure Pulse length
April 29, 2004
XTOD Overviewe
Richard M. Bionta
[email protected]
Spontaneous radiation is a big background
0 < Ephoton < 1.2
400 keV < Ephoton < 1.2
MeV
MeV
Far-field radiation pattern calculated by R. Tatchyn 400 m from undulator exit
April 29, 2004
XTOD Overviewe
Richard M. Bionta
[email protected]
NEH Hutch 1 Diagnostic systems
Windowless
Ion
Chamber
Imaging
Detector
Tank
April 29, 2004
XTOD Overviewe
Comissioning
Tank
Richard M. Bionta
[email protected]
Low Power imaging camera prototype
CCD
Camera
Microscope
Objective
X-ray beam
LSO or YAG:Ce crystal prism assembly
April 29, 2004
XTOD Overviewe
Richard M. Bionta
[email protected]
Camera configuration allows choice of resolution / FOV
1.5 mm
1.5 mm
1.1 mm
April 29, 2004
XTOD Overviewe
Richard M. Bionta
[email protected]
Indirect, high power imaging system
Be Mirror
Cuts off high energy spontaneous
Be Reflectivity at 8.267 keV
Be Mirror angle provides "gain" adjustment
over several orders of magnitude.
Reflectivity
1.E+00
1.E-02
1.E-04
1.E-06
0
0.5
1
1.5
2
Angle, deg
April 29, 2004
XTOD Overviewe
Richard M. Bionta
[email protected]
2.5
Commissioning Diagnostics
Intrusive measurements behind attenuator
Measurements
Photon energy spectra
Total energy
Spatial coherence
Spatial shape and centroid
Divergence
R&D
Pulse length
April 29, 2004
XTOD Overviewe
Richard M. Bionta
[email protected]
Sensitivity test X-ray pulse length / synchronization concept
Optical Fiber Pigtailed Sensor
InGaAsP Ridge Waveguide
0.2 mm InP cap
0.6 mm InGaAsP waveguide
Mach-Zehnder Interferometer to
convert sensor optical phase
modulation to intensity modulation
X-ray pulse
OSA
-15 dB
26 dBm
0 dBm
Tunable
Laser
-1dB
90:10
30 dBm
EDFA
10 dBm
11 dBm
-1dB
9 dBm
-1dB
Detector
P
Detector
50:50
50:50
Scope
9 dBm
F
Trigger
A
10 dBm
April 29, 2004
XTOD Overviewe
Richard M. Bionta
[email protected]
Sputtered-sliced multilayer gratings as high bw spectrometers
5-mm-thick Mo/Si multilayer (d=200 Å)
on Si wafer substrate. Thinned and
polished to a 10- mm-thick slice
0.3 mm
SEM image of Mo/Si multilayer
April 29, 2004
XTOD Overviewe
Richard M. Bionta
[email protected]
Low-Z Refractive Optic Alternatives to Hi-Z Mirrors
Diamond-Turned Al Blazed Phase Plate
April 29, 2004
XTOD Overviewe
Diamond-Turned Be Parabola
Richard M. Bionta
[email protected]
Modeling and simulation
Roman’s
Spontaneous Far-field
Spontanious
Distribution
Monte
Carlo
Undulator
Optics
Diffracted
FEL
Beam
Gaussian
Materials
Data Base
Time
Domain
Frequency
Domain
Transforms
Multi-mode
Wave
Modulation of modes
by optics
Temporal
Spatial
April 29, 2004
XTOD Overviewe
Richard M. Bionta
[email protected]
Photon Monte Carlo Simulations for predicting
backgrounds and detector
LSO
performance
4,000
3,000
Y, microns
2,000
Monte
Carlo
1,000
0
-1,000
Bend
-2,000
LSO25 Exit Z
-3,000
-4,000
450
-5,000
400
-4,000
-2,000
0
2,000
8,000
4,000
350
6,000
300
X, microns
4,000
250
200
X Ray Photons
150
SPEAR source
simulation
2,000
0
100
-2,000
50
-4,000
0
0
10
20
30
40
-6,000
-8,000
-10,000
-10,000
-5,000
0
8,000
6,000
4,000
2,000
0
Visible photons
-2,000
-4,000
-6,000
-8,000
April 29, 2004
XTOD Overviewe
-10,000
-10,000
-5,000
0
5,000
Richard M. Bionta
[email protected]
5,000
Common SW base for managing
deliverables
Ginger
Materials
Near
Field
Far Field
FEL Sim Spontaneous Sim
Models of
deliverables
Data
Analysis
April 29, 2004
XTOD Overviewe
Ray Tracer
Data
Storage
Design
Specs
Data
Acquisition
Richard M. Bionta
[email protected]
Schedule
FY04
FY05
FY06
FY07
FY08
Management / Oversight
Management and oversight PED
Controls
Mechanical and Vacuum
EIR Review
Front End Enclosure(FEE)
Near Experimental Hall
Tunnel
Far Experimental Hall
#
#
Facility Optical Systems
Lehman Review
Fixed Mask FEE
Slits/Collimator A FEE
Slits/Collimator B FEE
Gas Attenuator FEE
Solid Attenuator FEE
Low Energy Mirror System, NEH Hutch 3
April 29, 2004
XTOD Overviewe
#
Richard M. Bionta
[email protected]
Schedule (cont.)
FY04
FY05
FY06
FY07
FY08
-
1.3.1.4..
End Station Optical Systems
1.3.1.4.2.
1.3.1.4.1.
1.3.1.4.2.
1.3.1.4.5.
Optics Tank - NEH Hutch 2
K-B Mirror System B - Far Hall
Optics Tank - Far Hall
Refractive Lenses NEH Optics Tank
Last item
1.3.1.5..
Crystals and Gratings
1.3.1.1.2.
1.3.1.5.1.
1.3.1.5.2.
Lehman Review
Crystal Monochromator FEH
Pulse Split and delay FEH
1.3.1.6..
Diagnostics
1.3.1.6.1.
1.3.1.6.2.
1.3.1.6.3.
1.3.1.6.4.
1.3.1.6.5.
1.3.1.6.6.
1.3.1.6.8.
1.3.1.6.9.
1.3.1.6.10.
1.3.1.6.11.
Modeling and Simulation
Direct Scintillator Imager
Indirect Imager
Ion Chamber
Gas Mixing System FEE
Imaging Diagnostic Tank
Comissioning Diagnostic Tank
Total Energy Measurement
Pulse Length
Spectrometer
April 29, 2004
XTOD Overviewe
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
Richard M. Bionta
[email protected]
Resources
April 29, 2004
XTOD Overviewe
27831
08
20
07
20
06
20
05
20
20
20
FY
FTEs
20
15
10
5
0
2003
Total
04
12000
10000
8000
6000
4000
2000
0
03
$K
Funding Profile
FTE
Management
Controls
Mech & Vac
Fixed Mask
Slit A & B
Flipper Mirror
Gas Attenuator
Solid Attenuator
Optics Tanks
Monochrometer
Pulse Split and Delay
Modeling and Simulation
Direct Imager
Indirect Imager
Windowless Ion chamber
Gas system
Diagnostic tanks
Total energy
Spectral Measurement
Coherence Measurement
Centroid and Divergence
Installation
R&D
$K
5993
1119
2724
338
1954
769
2044
233
684
338
275
864
820
689
878
562
573
806
739
383
94
2461
2491
2004
2005
2006
2007
2008
FY
Richard M. Bionta
[email protected]
XTOD Summary
Large number of independent deliverables
Draw heavily on diverse engineering talent from LLNL
Source for testing damage issues does not exist
Multiple detector / optics schemes
Funding Profile means considerable design work
still ahead
Extensive simulations of beam and components
The resources are available for success.
April 29, 2004
XTOD Overviewe
Richard M. Bionta
[email protected]