Astroparticle physics 1. stellar astrophysics and solar neutrinos

Download Report

Transcript Astroparticle physics 1. stellar astrophysics and solar neutrinos

Astroparticle physics
Introduction and
astrophysical information
Alberto Carramiñana
Instituto Nacional de Astrofísica, Óptica y Electrónica
Tonantzintla, Puebla, México
Xalapa, 2 August 2004
The composition of the Universe
• Planets.
• Stars: nuclear burning &
degenerate corpses.
• Gas, dust (magnetic
fields (cosmic-rays)).
• Galaxies: normal, active.
• Cosmological
background(s).
• Protons, neutrons 
baryons.
• Electrons, muons 
leptons.
• Neutrinos.
• Mesons  hadrons 
quarks.
Early Universe / Cosmic-rays / astrophysical neutrinos /
non baryonic dark matter / dark energy
Astroparticle physics
•
•
•
•
•
Astrophysics oriented course.
Astrophysical information.
Stellar physics (solar neutrinos).
Interstellar medium (cosmic-rays).
Supernovae and degenerate stars
(cosmic-rays, neutrinos).
• Beyond our galaxy (high energy cosmicrays, (relic neutrinos), dark matter).
Astrophysical information carriers
• Photons: radio waves to -rays.
• Neutrinos: MeV to ZeV.
• Gravitational waves: not today...
• Elementary particles: cosmic-rays.
Photons
• Electromagnetic waves:
solution to EM wave
equations:
– polarization vector
– dispersion relation 
wavelength / frequency
– Planck relation  photon
energy
• Electromagnetic spectrum
Electromagnetic spectrum
Radio, mm, infrared space, infrared
ground, optical ground and space,
uv, X-ray space, -ray space and
ground-based telescopes.
Focusing telescopes
• Radiation is focussed
to a detector (radio to a
few keV).
High energy
telescopes
• Photoelectric effect
• Compton telescopes.
• Pair production telescopes.
Neutrinos
• Weak force interaction  spin
• Energy
• Flavour: e, , .
• Mass!
Neutrino detectors
• Chemical
– Chlorine:
– Gallium:
• e-scattering Cerenkov: Kamiokande
& Super-Kamiokande (water).
• Charged and neutral current:
Sudbury Neutrino Observatory (D2O)
 flavour sensitive.
• Very high energy -cascades:
Pierre Auger.
Gravitational waves
Not today!
Cosmic-rays
• Earth “bombarded” by highenergy particles: cosmicrays.
• Charged particles do not
conserve direction in the
Galaxy.
• Observed energies: below
108eV to 1020.5 eV.
– low and intermediate energies
(1015eV) from balloon or space.
– high energy (above 1015eV)
from ground.
astro.uchicago.edu/~smoneil/background.html
Cosmic-rays from space
Composition
Solar particles
Solar modulation
At Spacelab 2
Grunsfeld et al. 1988
Access:
Advanced Cosmic-ray Composition Experiment for
the Space Station
hep.uchicago.edu/~swordy/access.html
Cosmic-rays
from ground
• Particle cascades from
incoming cosmic-ray.
– Direct detection of
secondary particles
(e,) at ground level.
– Atmospheric
fluorescence emission.
• Cerenkov emission 
very high energy -ray
telescopes (> 100 GeV).
http://www.bartol.udel.edu/~neutronm/catch/cr2.html