Optical techniques for molecular manipulation
Download
Report
Transcript Optical techniques for molecular manipulation
Light
and
Matter
Classical electrodynamics
Tim Freegarde
School of Physics & Astronomy
University of Southampton
Electromagnetic waves
• electrostatic force acts through vacuum
• retardation due to finite speed of light, enhanced by inertia of any charged particles
Q1
a
F
Q1Q2
40 r 2
Q2
• net force due to oscillating dipole
F t Q2
Q1
40 r
3
at r c
2
Maxwell’s equations
• Gauss
• no monopoles
• Faraday
• Ampère
dv
E.dDS
0
B.dS 0
E.ds t B.dS
DE
B
.
d
s
J
H
J
.dS
0
0
t t
D
E 0E P
0
B
0 0 H Μ
Β
E
E
J
t
E
J0 J 00
B
t
t
constitutive equations
3
Constitutive equations
D DE, B
D 0 r E
D 0E P
H HΕ, B
B 0 r H
B 0 H Μ
J JE, B
• conservation of charge
J E
J
0
t
constitutive equations
4
Maxwell’s equations
D
D 0 r E
D 0E P
B 0
B 0 r H
B 0 H Μ
J E
constitutive equations
Β
E
t
D
H J
t
conservation of charge
J
0
t
5
Electromagnetic wave equation
use constitutive equations to
reduce electric
& magnetic
0
fields to single functions
D
D 0 r E
B 0
B 0 r H
B 0 H Μ
J E
differentiate equations to
allow electric or magnetic
constitutive
equations
field to be eliminated
Β
E
t
D
H J
t
conservation of charge
D EP
Jvector
relations
0 to
apply
t equation
produce wave
6
Sinusoidal plane wave solutions
D
B 0
Β
E
t
D
H J
t
Er, t E0 cost kz
E y
Bx
E z
k
y
t
z
B E
H y H z
Dx x , y y , x
y
t
z
7
Maxwell’s equations
D
D D0Er ,EB
D 0E P
B 0
BH
0Εr,H
H
B
B 0 H Μ
J
JE, B
constitutive equations
Β
E
t
D
H J
t
conservation of charge
J
0
t
8
Electromagnetic wave equations
use constitutive equations to
reduce electric
& magnetic
0
fields to single functions
D
D 0 r E
B 0
B 0 r H
B 0 H Μ
J E
differentiate equations to
allow electric or magnetic
constitutive
equations
field to be eliminated
Β
E
t
D
H J
t
conservation of charge
D EP
Jvector
relations
0 to
apply
t equation
produce wave
9
Constitutive equations
D
D 0 r E
B 0
B 0 r H
Β
E
t
D
H J
t
J E
J
0
t
use constitutive equations to
reduce electric & magnetic
fields to single functions
differentiate equations to
allow electric or magnetic
field to be eliminated
apply vector relations to
produce wave equation
10
Electromagnetic waves in isotropic media
• atoms and molecules are polarized by applied fields
• induced polarization
• alignment of permanent
dipole moment
• polarization modifies field propagation: refractive index; absorption
11
Constitutive equations
• define polarization P
and magnetization M
• governed by properties
of the optical medium
• vapours, dielectrics,
plasmas, metals
D 0 r E
apply Newtonian mechanics
to determine response of
medium to applied field
B 0 r H
J E
• magnetization usually too slow to have effect
at optical frequencies
• assume (for now) D[E] to be linear and scalar
use result to write (complex)
conductivity, dielectric
constant etc.
insert into constitutive
equations and hence derive
wave equation as usual
12
Vapours and dielectrics
m02 2
x
2
• bound or massive nuclei
• electrons confined in harmonic potential
• restoring force proportional to displacement
• Newtonian dynamics
• frequency dependence (dispersion)
Ne2 m
P 2
E
2
0
13
Metals and conductors
• free charges
• diffusion in response to applied field
• equilibrium velocity characterized by conductivity
v
• frequency dependence (dispersion)
E
• damped solutions (absorption)
• dissipation through resistive heating
14
Plasmas and the ionosphere
• independent, free charges
• inertia in response to applied field
• Newtonian dynamics
• frequency dependence (dispersion)
Ne2
P
E
2
m
15
Electromagnetic energy density & flow
D
D 0 r E
D 0E P
B 0
B 0 r H
B 0 H Μ
J E
constitutive equations
Β
E
t
D
H J
t
conservation of charge
J
0
t
16
Electromagnetic energy density & flow
• BBC Radio 4 long wave transmitter, Droitwich
frequency: 198 kHz
l = 1515 m
power:
400 kW
• MSF clock transmitter, Rugby
frequency: 60 kHz
power:
60 kW
l = 5000 m
17
Constitutive equations
• define polarization P
and magnetization M
• governed by properties
of the optical medium
• vapours, dielectrics,
plasmas, metals
D 0 r E
apply Newtonian mechanics
to determine response of
medium to applied field
B 0 r H
J E
• magnetization usually too slow to have effect
at optical frequencies
• assume (for now) D[E] to be linear and scalar
use result to write (complex)
conductivity, dielectric
constant etc.
insert into constitutive
equations and hence derive
wave equation as usual
18
Continuity conditions
• transverse waves on a guitar string
T
T
2 y
2 y
2 T 2
t
x
x
• continuity of
y
… finite extension
• conservation of energy
• continuity of
y
x
… finite acceleration
• conservation of momentum
19
Continuity conditions
• electromagnetic fields
• parallel components
E//,1 E//,2
• conservation of energy
H //,1 H //,2
• perpendicular components
D,1 D, 2
• conservation of momentum
B,1 B, 2
E//
1
2
D
1
2
20
Reflection at metal and dielectric interfaces
• electromagnetic fields
• parallel components
• conservation of energy
E//,1 E//,2
E1 H
t k
1 z HE2 t k1
2 z
//,1
//,2
D,1 D, 2
x
• conservation of momentum y B ,1
A
B, 2
2
apply continuity conditions
for separate components
E3 t k1 z
• perpendicular components
combine forward and
reflected waves to give total
E//
fields for each region
D
B
1
z
hence derive fractional
transmission and reflection
2
21
Reflection at metal and dielectric interfaces
E//,1 E//,2
H //,1 H //,2
E1 t k1 z E2 t k2 z
D,1 D, 2
E3 t k1 z
B,1 B, 2
x
y
A
combine forward and
reflected waves to give total
fields for each region
apply continuity conditions
for separate components
B
z
hence derive fractional
transmission and reflection
22
Reflection at multiple dielectric interfaces
combine forward and
reflected waves to give total
fields for each region
E//,1 E//,2
H //,1 H //,2
D,1 D, 2
B,1 B, 2
E1 t k1 z E23 t k2 z E5 t k3 z
E23 t k1 z E4 t k2 z
x
y
A
B
z
apply continuity conditions
for separate components
hence derive fractional
C
transmission and reflection
23
Reflection at multiple dielectric interfaces
E//,1 E//,2
H //,1 H //,2
D,1 D, 2
B,1 B, 2
i t k3 z
i t k 2 z
i t k1 z
t k3 z
t k2 z E5e
E1e
t k1 z E3e
i t k1 z
i t k 2 z
E2e
t k1 z E4e
t k2 z
A
0
x
y
B
l
C
z
E1ei t k1 0 E2eEi 1 t kE1 02 E3ei Et 4 k2 0 E4ei t k2 0
k1
1
E e
i t k1 0
1
1 i t k1 0
eE E2
E
Z12 1
k12
Z2
E3ei Et 4k 0 E4ei t k 0
2
2
iik
3tl k3l
i t kik22l l
2l
E3ei t Ek23l e ikE
e
E
e
E
e
4
4
5
k2
2
E e E e E e E e
i 1 t k 2l ik2l
i t kik22l l
3
4
3 Z2
4
k13
Z
3
E5eiik3tlk3l
24
Reflection at multiple dielectric interfaces
E//,1 E//,2
H //,1 H //,2
D,1 D, 2
B,1 B, 2
E1ei t k1z
E3ei t k2 z E5ei t k3 z
E2ei t k1z
E4ei t k2 z
x
y
A
0
B
l
C
z
25