Transcript PowerPoint

The Physics of
Cosmic Ray Acceleration
Tony Bell
University of Oxford
with Brian Reville
Klara Schure
Gwenael Giacinti
Anabella Araudo
Katherine Blundell
SN1006: A supernova remnant 7,000 light years from Earth
X-ray (blue): NASA/CXC/Rutgers/G.Cassam-Chenai, J.Hughes et al; Radio (red): NRAO/AUI/GBT/VLA/Dyer, Maddalena & Cornwell;
Optical (yellow/orange): Middlebury College/F.Winkler. NOAO/AURA/NSF/CTIO Schmidt & DSS
Shock acceleration energy spectrum
Krymsky (1977), Axford Leer & Skadron (1977), Blandford & Ostriker (1978), Bell (1978)
B1
Cosmic Ray
B2
shock
Low velocity
High velocity
plasma
plasma
At each shock crossing, shock velocity = u
s
Fractional energy gain
Fraction of CR lost



u
n
 s
n
c
us
c
Differential energy spectrum
N ( )   2
Acceleration time limits CR energy
shock
ushock
ncr
upstream
L
rg
For acceleration to high energy
Bohm diffusion: mfp = Larmor radius
Max CR energy

u shock
 E 
13 


  3 10 
1 
 eV 
 5000 km s 
2
 B   t  D 



 
 3G   300 yr  DBohm 
Lagage & Cesarsky 1983
1) Need large magnetic field
2) Structured on scale of CR Larmor radius
1
Electric currents carried by CR and thermal plasma
R
jcr
L
CR
pre-cursor
Density of 1015eV CR: ~10-12 cm-3
Current density: jcr ~ 10-18 Amp m-2
jcrxB force acts on plasma to drive instabilities
Non-resonant hybrid (NRH) instability
B
jxB
jxB
Bell, MNRAS 353, 550 (2004)
CR current
jxB expands loops
stretches field lines
more B
more jxB
Cavity/wall structure
Historical shell supernova remnants
(Vink & Laming, 2003; Völk, Berezhko, Ksenofontov, 2005)
Tycho 1572AD
Kepler 1604AD
SN1006
Cas A 1680AD
Chandra observations
NASA/CXC/Rutgers/
J.Hughes et al.
NASA/CXC/Rutgers/
J.Warren & J.Hughes et al.
NASA/CXC/NCSU/
S.Reynolds et al.
NASA/CXC/MIT/UMass Amherst/
M.D.Stage et al.
Maximum CR energy: need time to amplify magnetic field
Max instability growth rate
 max  jCR
1
2
0

SNR
For magnetic field amplification need

max
shock
X
dt  5
CR
precursor
CR not confined until
CR electric charge
passed upstream
QCR   jCR dt
X
Cm-2
Shock
upstream
precursor
downstream
Maximum CR energy: need time to amplify magnetic field
 CR  230 ne1/ 2 u72 Rpc TeV
Cas A
u7  0.6, R pc  2, ne  1
 CR  160 TeV
Already too slow
Sedov phase
1/ 3 1/ 6 4 / 3
 CR  20 E44
ne u6 TeV
shock vel in 1000 km s-1
Blast wave energy in 1044J
SN expansion into circumstellar wind
  7u
wind mass loss in
10-5 solar masses yr-1
2
30
M 5
PeV
u4
shock vel in 30,000 km s-1
wind vel in 10 km s-1
CR need to escape efficiently into ISM
90% of CR energy
confined with
  400 u74 / 3 TeV
Low energy CR cool adiabatically as SNR expands
Energy drives blast wave
Given to new generation of CR

Etotal  0.05 ln  max
  min



 4R03 

 0u02
 3 
10% of CR energy
escapes with
 escape  400 u74 / 3 TeV
Two escape routes from SNR – structure of CR spectrum
Released when
SNR disperses
Escaped during
Sedov expansion
 CR ,max  230 ne1/ 2 u72 Rpc TeV
10GeV
100GeV
1TeV
10TeV
100TeV
Spectral bend at ~200GeV (PAMELA, AMS)
Tomassetti (2012)
Hydrogen/Helium knee at 640TeV?
(ARGO-YBJ/LHAAASO)
Bartoli et al 2015
Particle acceleration in radio galaxies
Image Credit: X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Radio: NSF/NRAO/AUI/VLA
Quasar jet 4C74.26
Beamwidth: 15”
Flux density (Jy)
Riley & Warner (1990)
Erlund et al 2010
Erlund
et et
al al2010
Erlund
2010
Araudo, Blundell & Bell (2015)
Radio
IR
optical
X-ray
Frequency
Turnover in IR/optical:~200 GeV electrons
Consistent with Weibel turbulence:
Small scale, rapidly damped
Weibel instability: counter-streaming beams
Spitkovsky, 2008
1) Perturbed beam density
2) Magnetic field
Problem: small scalelength
n

7
s
 2 10  -4 -3 
 pi
 10 cm 
c
3) Focus currents
1/ 2
m
Relativistic shocks are ~perpendicular
In upstream rest frame
In shock rest frame, G = 4
u shock  c 1  G 2
In shock rest frame, G = 16
Plasma flow at 0.998 c
CR penetrate upstream
~ one Larmor radius
q
Shock velocity = c/10
Perpendicular shock
Even at shock velocity = c/10
CR have difficulty getting
back from downstream
shock
Plasma flow at c/3
Perpendicular relativistic shocks
Shock
Monte Carlo with fixed scattering downstream, no scattering upstream
In downstream rest frame (not shock frame)
n/g = 0
No energy gain
Energy gain = 2.34
n/g = 0.1
Energy gain = 4.44
n/g = 1
Need
n/g >1 for reasonable energy gain
Energy gain = 31.5
n/g = 10
Limitations of Weibel instability
Well-recognised
Lemoine & Pelettier (2010), Sironi, Spitkovsky & Arons (2013), Reville & Bell (2014)
Imagine turbulence consisting of random cells of size

s
Each cell deflects through angle
Characteristic scalelength
s ( s  rg )
s
 
rg

Larmor radius
n
s
  1
g rg
n


s
 2 107  -4 -3 
 pi
 10 cm 
c
1
Larmor radius
1/ 2
m
 E  B 
 3.3 1019 m
rg  
 
 EeV   G 
Non-resonant hybrid (NRH) instability – can this help?
Expands non-linearly,
1
 E   Bamplified 
 3 1011 m
s
 
 TeV   100 G 

  max 
Condition for CR confinement:   max dt  5


1
2

j 0





Disordered amplified magnetic field dominates initial field
Maximum CR energy capable of exciting turbulence (assuming ~E-2.4 CR spectrum)
ENRH
n

9/ 4 
 Gshock
  4 -3 
 10 cm 
5/ 4
 B0 


 G 
5 / 2
700 GeV
Turbulence can accelerate CR to higher energy
Emax
n

5/ 2 
 Gshock
  4 -3 
 10 cm 
3/ 2
3
 B0 

 100 TeV

G


Guideline energy scale at relativistic shocks
Hillas energy
 R   B0 
 
 EeV
EHillas  cBR  
kpc

G



Max energy to which CR are accelerated
CR energy
Emax
n

5/ 2 
 Gshock
  4 -3 
 10 cm 
3/ 2
3
 B0 

 100 TeV

G


Max energy at which CR excite non-resonant turbulence
ENRH
n

9/ 4 
 Gshock
  4 -3 
 10 cm 
5/ 4
 B0 


 G 
5 / 2
700 GeV
n & B0 are upstream values
defined in shock/downstream rest frame
Energy at which CR are injected
E0  Gshock GeV
Predictions
•
Historical SNR (Cas A, Tycho, Kepler, SN1006) accelerate to few 100TeV
Emax  ne1/ 2 u72 Rpc 200 TeV
but may have accelerated to PeV in past
•
•
PeV acceleration occurs in very young SNR expanding at high velocity
into dense pre-ejected wind
Sedov SNR accelerate to
1/ 3 1/ 6 4 / 3
Enon rel  E44
ne u6 20 TeV
•
Interiors of Sedov SNR contain unseen CR bubble
•
Relativistic shocks (eg jet termination shocks) accelerate to
Erel
•
n

5/ 2 
 Gshock
  4 -3 
 10 cm 
3/ 2
3
 B0 

 100 TeV
 G 
Relativistic shocks do not accelerate UHECR (probably)