Acceleration of Coronal Mass Ejection In Long Rising Solar
Download
Report
Transcript Acceleration of Coronal Mass Ejection In Long Rising Solar
Introduction to Space Weather
Ionosphere
Nov. 12, 2009
Jie Zhang
Copyright ©
CSI 662 / PHYS 660
Fall, 2009
Roadmap
•Part 1: The Sun
•Part 2: The Heliosphere
•Part 3: The Magnetosphere
•Part 4: The Ionsophere
•Part 5: Space Weather
Effects
•Part 4: The Ionosphere
CSI 662 / PHYS 660
Nov. 12
The Ionosphere
Height profile and layers
Ionization production
Ionization loss
Radio wave
Ionosphere Currents
References:
•Kallenrode: Chap. 8.3
•Prolss: Chap. 2, Chap. 4, Chap. 7
2009
Plasma Physics
Reference: Kallenrode, Chap. 8.3.2
•Anisotropic Conductivity: field-aligned, Pederson, and
Hall
Brief History
• Fluctuation of geomagnetic field by atmospheric current
(Kelvin, 1860)
• First transmitting radio waves across Atlantic (Marconi, 1901)
• Solar UV radiation responsible for the charge carriers
(Kennelly, Heaviside and Lodge 1902)
• Radio wave experiment on ionosphere (Appleton 1924)
• Appleton was awarded the Nobel prize for the work of
ionospheric physics.
Atmospheric Layers
Horizontal Structure of the Terrestrial Atmosphere
Atmospheric Layers
Classified by temperature
• Troposphere
• 0 10 km
• ~300 K 200 K
• Stratosphere
• 10 50 km
• ~200 K 250 K
• Mesosphere
• 50 km 80 km
• ~250 K 160 K
• Thermosphere
• > 80 km (~10000)
• 160 K ~1000 K
Atmos. Layers
Classified by Gravitational binding
• Barosphere
• 0 km 600 km
• binding
• Exosphere
• > 600 km
• Escaping or evaporation
Classified by Composition
• Homosphere
• 0 km 100 km
• Homogeneous
• Heterosphere
• 100 km ~2000 km
• Inhomogeneous
• Hydrogensphere (Geocorona)
• > ~2000 km
• Dominated by hydrogen
Basic Parameters
Chemical composition (ni/n):
• Height = 0 km, 78% N2, 21% O2, 1% others (trace gases)
• Height = 300 km, 78% O, 21% N2, 1% O2
Pressure:
• Height = 0 km, P = 105 pa
• Height = 300 km, P=10-5 pa
Atomic Number
Mass Number
H
He
N
O
N2
O2
1
1
2
4
7
14
8
16
28
32
f (Degree of freedom) 3
3
3
3 translation
3
5
5
+ 2 rotation
Barospheric Density Distribution
Hydrostatic equilibrium or aerostatic equations
dP
g
dz
P
mn m
kT
dP
P
dz
H
kT (h)
H ( h)
Pressure Scale Height
m ( h) g ( h)
h
P (h) p (h0 ) exp{ Hdz( z ) } Barometric Law
h0
h
n(h) n(h0 ) TT((hh0)) exp{ Hdz( z ) }
h0
n(h) n(h0 ) exp(
isothermal
h h0
H
)
Barospheric Density Distribution
• Isothermal Scale
Heights
– Hi = kT/(mig)
N2
for g(200 km)
HN2 = 0.032* T
HO2 = 0.028* T
HO = 0.0567* T
O
O2
Altitude interval where density
decreases by 10:
SOLAR - TERRESTRIAL
ENERGY SOURCES
Source
Energy
(Wm-2)
Solar Cycle
Change (Wm-2)
Deposition
Altitude
Solar Radiation
• total
• UV 200-300 nm
• VUV 0-200 nm
1366
15.4
0.15
1.2
0.17
0.15
Particles
• electron aurora III
• solar protons
• galactic cosmic rays
0.06
0.002
0.0000007
Peak Joule Heating (strong storm)
• E=180 mVm-1
Solar Wind
0.4
0.0006
surface
10-80 km
50-500 km
90-120 km
30-90 km
0-90 km
90-200 km
above 500 km
SPECTRUM
VARIABILITY
TOTAL
IRRADIANCE
VARIABILITY
Solar Energy
Deposition
Atmospheric
Structure
SPACE
WEATHER
EUV
FUV
MUV
RADIATION
GLOBAL
CHANGE
Atmospheric Absorption Processes
• Ionization
– O2 + h O2+ + e*, …
• Dissociation
– N2 + h N + N, …
• Excitation
– O + h O*
• O* O + h ’
• O* + X O + X
radiation
quenching or deactivation
• Dissociative ionization – excitation
– N2 + h N+* + N + e, …
Ionosphere
Structure
Classified by Composition
• D region
• h < 90 km
• Negative ions, e.g., NO3• E region
• 90 km < h < 170 km
• O2+, NO+
• F region
• 170 km < h < 1000 km
• O+
• F1 region, F2 region
•
Plasmasphere
• h > 1000 km
• H+
Ionosphere Structure
Height of maximum
density:
200 – 400 km
F2
Maximum Ionization
Density:
1 – 30 X 1011 m-3
Column Density:
1 – 10 X 1017 m-3
F1
E
Total ne
Chapman Layer
• The Chapman profile of an ionospheric layer results from the
superposition of the height dependence of the particle density
and the flux of the ionizing electromagnetic radiation
q ( z ) n i I ( z )
q : ionizat ionrat e
n : neut ralpart icledensit y
i : ionizat ioncross sect ion
I : radiat ionint ensit y
Chapman Profile
Chapman Layer
• Neutral particle density: barometric height formula
z
n( z ) n0 exp{ }
H
• Radiation Intensity: Bougert-Lambert-Beer’s Law
dI
I a n
dz
1
I ( z ) I exp{
a n( z )dz} I exp{
}
cos z
cos
: theSun' s alt itude. T heopticaldepth
a n( z )dz
z
Optical Depth
• Definition
(z) n(z')dz'
z
• For several species
– i = N 2 , O2 , O
(z) ini (z')dz'
i
z
• Altitude of unit optical depth: F(z)= F() e-1
– Solve (z) = 1 for z
– Where solar radiation is effectively extinct
Continued on
November 19, 2009
Ionosphere Structure
Ionosphere:
• Weak ionization
• Electrons and ions
represent trace
gases
• Ion/neutral ratio
(n/nn)
• 10-8 at 100 km
• 10-3 at 300 km
• 10-2 at 1000 km
Ionization Production
• Photoionization
• Primary
• Secondary
• Charge Exchange
• Particle Precipitation
Photoionization
Processes
– O + h ( 91.0 nm) O+ + e
– O2 + h ( 102.8 nm) O2+ + e
– N2 + h ( 79.6 nm) N2+ + e
Ionization Energies
Species Dissociation Dissociation
(Å)
(eV)
O
O2
N2
2423.7
1270.4
5.11
9.76
Ionization
(Å)
Ionization
(eV)
910.44
1027.8
796
13.62
12.06
15.57
Charge Exchange
CE
X Y X Y
qX k x,Y nX nY
CE
CE
Charge Exchange Process
Charge Exchange Rate
• Does not change the total ionization density
• Important source for NO+ and O2+ in the lower
ionosphere
• Important source for H+ for the plasmasphere
Particle Precipitation
X e primary ( E 12ev) X esec onday e primary
• Play an important role in high latitude
Ionization Loss
• Dissociative Recombination of Molecular Ions
DR
XY e X Y
l XY
DR
k x,Y nX Y ne
DR
k x,Y 1013 m3s 1
DR
Ion loss Rate
Dissociation Recombination
Reaction constants for O2+,N2+,
and NO+
Largest reaction constant
Ionization Loss
• Radiative Recombination of Atomic Ions
RR
X e X photon
kO
RR
18
3 1
10 m s
• Charge Exchange
kO , N
k O ,O
19
3 1
CE
5 10
CE
125 10 19 m3 s 1
ms
2
2
Ionization Loss
• E region (O2+)
• Dissociative recombination is the quickest way of
removing ions and elections
l E region
DR
kO
DR
2
nO ne
2
nO ne n
2
l E region (h) n (h)
2
Ionization Loss
• F region (O+)
• Charge exchange is the quickest way of removing O+ ions
lF region
DR
k O ,O
2
CE
nO nO
2
nO ne n
lF region (h) (h)n(h)
where... (h) kO ,O
2
CE
nO2 (h)
Density Balance Equation
ns
t
qs ls ds
• Density is determined by the ion production term, ion
loss term and ion diffusion term, for species s
d s (nsus )
• Day time: production-loss equilibrium
qs ls
• Night time: production is negligible
ns
t
ls
Variation of Ion Density
• The ionization production depends on the solar
radiation intensity and the zenith angle
• The ion density shows daily, seasonal variation as well
solar rotation and solar cycle effects
After sunrise
n
t
3 1
10 m s
8
TEC (Total Electron
Content) diurnal
variation
Variation of Ion Density
D and F1layers may
disappear at
night
Radio Waves in the Ionosphere
• Radio wave is altered during its passage through the
ionosphere
– Propagation direction changes: refracted, reflected
– Intensity changes: attenuated, absorbed
Natural Oscillation in a Plasma:
Plasma Frequency
nme
d 2 ( x )
dt
2
e2n2
0
x
x (x) 0 sin( p t )
p
e2n
0 me
p [ s ] 56.4 n[m ]
1
3
3
fp[ Hz] 9 n[m ]
Forced Oscillation in a Plasma:
d 2 ( x )
nme
dt
2
nme
d ( x )
dt
e2n2
0
x en 0 sin(t )
x (x) 0 sin(t )
(x) 0 sin(t ) (x) 0 cos(t )
2
p (x) 0 sin(t ) (e / me ) 0 sin(t )
2
Ionosphere as a Dielectric
• Interaction depends on frequency
p
phase 0
conductivity 0
p 2
nref 1 ( )
• Nref < 1, radio wave will be refracted according to
the familiar Snell’s law. Θ2 > Θ1
sin 2
sin 1
nref
Ionosphere as a Dielectric
Wave damping due to electron interaction with neutral
particles
Pfr
e 0
2 me
2
2
n e , n
2
Radio wave (e.g., 5 Mhz) refraction and damping
usually occur in the upper D region and lower E
region
Ionosphere as a Conducting
Reflection
p (h)
• Wave interacts strongly with plasma, inducing a
large current. Ionosphere acts like a conductor
• Radio wave is reflected
• This often occurs in the F-region
Radio Wave
Ionosonde
A special radar to examine
ionosphere from ionogram:
Elapsed time height
Frequency electron density
ionosonde
Ionosphere Currents
Polar Upper Atmosphere
• Polar Cap: ~ 30°
• Polar oval: a few degree
• Subpolar latitude
Polar Upper Atmosphere
Magnetic field connection
• Polar Cap: magnetotail lobe region, open field
• Polar oval:
• (1) night side: connect to plasma sheet
• (2) day side: connect to cusp region
• Subpolar latitude: conjugate dipole field, closed
Convection and Electric Field
Convection and Electric Field
• Polar cap electric field Epc (from measurement)
• Dawn to dusk direction
• Epc = 10 mV/m
• Polar cap potential: ~ 30 kV from 6 LT to 18 LT, over 3000
km
• Polar oval electric field
• Dawn sector: equatorward
• Dusk sector: poleward
• Epc=30 mV/m
• Potential drop: ~ 30 kV, counterbalance of the polar cap E
• Subpolar region electric field
• < 5 mV/m
Convection and Electric Field
• Polar cap convection
• Caused by E X B drift
• anti-sunward
• Drift time scale cross the polar cap ~ 2 hours
• Polar oval convection
• Sunward convection
• Form a close loop with the polar cap convection
• Two convection cells
Drift velocity = 500 m/s,
when
E=10 mV/m, and
B=20000 nT
UD E / B
Solar Wind Dynamo
• Polar cap electric field originates from solar wind dynamo
electric field
• Same direction
• Same overall electric potential drop
• Electric field is ~ 40 times as strong as in solar wind
Esw U sw BE
Ionosphere Current
• Pederson current: perpendicular B, parallel E ; horizontal
• Hall current:
perpendicular B, perpendicular E ; horizontal
• Burkeland current: parallel to B ; vertical
Ionosphere Current
• Birkeland current: Field-aligned current
• Region 1 current: on the poleward side of the polar oval
• Region 2 current: on the equatorward side of the polar oval
Ionosphere-Magnetosphere Coupling
• Region 1 current
• Magnetotail current is
re-directed to the
ionosphere
• Current flows into the
ionosphere in the dawn
sector
• Current flows out the
ionosphere in the dusk
section
Ionosphere-Magnetosphere Coupling
• Region 2 current
• Associated magnetic
field lines end in the
equatorial plane of the
dawn and dusk
magnetosphere at a
geocentric distance of
L ≈ 7-10
• Driven by excess
charge in the dawn and
dusk sectors of the
dipole field, caused by
different particle paths
of electrons and ions
Ionosphere-Magnetosphere Coupling
• Drift of particles from the
plasma sheet
uD L
E
3
E
B
uD L
2
gr
u D gr
uD E
L1
• Ions and electrons drifts in different
• At small L, curvaturedirection along the dipole
gradient drift dominates
• Particles can only drift to • There is a forbidden zone for ions
within a certain distance of (electrons)
• Excess charges accumulate
the dipole
Ionosphere Conductivity
j E
j en(u u )
i
e
en(u u ) / E
i
e
Deriving conductivity σ is to find the drift velocity under the
E in the three components:
• Birkeland σ: parallel to B
• Pederson σ: parallel to E, E per B
• Hall σ: per E and B
Ionosphere Conductivity
Parallel conductivity
qs E ms s ,nu s 0
//
e2n
me e ,i
E // B
Force equilibrium:
Electric force = frictional force
No Lorentz force
For plasmas (without neutral), Coulomb collision
// 8103 (Te[k ])3/ 2 / ln
Ionosphere Conductivity
Transverse conductivity
EB
qs ( E us B) ms s,nus 0
Force equilibrium:
Electric force + magnetic force=
frictional force
Ionosphere Conductivity
EB
Transverse conductivity
P {
e ,n B e
H {
( B e ) 2
en
B ( ) 2 ( e ) 2
e ,n
B
en
B ( ) 2 ( e ) 2
e ,n
B
(
i , n B i
i ,n )
(
2
( B )
i 2
}
( B i ) 2
i ,n )
2
( B )
i 2
}
Maximum conductivity: i
i ,n
B
Transverse conductivity, especially Hall, confines to a
rather narrow range of height (~ 125 km), the so called
dynamo layer
The End