Transcript Document

Wave Packet Echo in Optical
Lattice and Decoherence Time
Chao Zhuang
U(t)
University
of Toronto
Aug. 15, 2006
CQISC2006
Aephraim Steinberg
Matthew Partlow
Samansa Maneshi
Jalani Kanem
Department of Physics,
Center for Quantum Information and Quantum Control,
Institute for Optical Sciences
University of Toronto
Outline
• Pulse echo
– Two level system
– Life time: T1, T2, T2*
– How it works & in What system
• Wave packet echo in optical lattice
– Setup and Measurement
– Optimize echo pulse
– Decoherence and coherence control
Something General
w
a 0 b 1
1
1
Ω
0
0
0 1
1
0
0  
u
T1 longitudinal lifetime
v
0 1
0
De-population
T2 transverse homogeneous lifetime
De-coherence
T2* transverse inhomogeneous lifetime
De-phase
Pulse echo: How it works
w


 pulse,
t3 t1t2 
pulse,
Free
Evolution
2
20 0
δ( )
δ
  0  
ρ(0 )
after
 pulse,
t3 t1t2
after
pulse,
2
20
ρρ(0 )
ρ
Ω0
u
*
t4 overlap
t2  T2
revive to max
T1
T2*
v
   t(1 )t
ρ
T2


t pulse
Pulse echo: Timeline
 
2
0
pulse
t1
 pulse
t2
t3
t4
t
T2* T2*
t
P
T2*
Pulse echo: Why it’s important

Inhomogeneous decay due to dephasing
can be reversed!

(De)coherence time due to homogeneous
decay can be measured directly.

Coherence time decides how long
quantum information can be stored in a
quantum system.
Pulse echo: What system

Spin Echo



Photon Echo



Nuclear Magnetic Resonance
E. L. Hahn, Phys. Rev. 80, 580 (1950)
Optical Resonance
N. A. Kurnit, I. D. Abella, and S. R. Hartmann,
Phys. Rev. Lett. 13, 567 (1964)
Wave Packet Echo

F. B. J. Buchkremer, R. Dumke, H. Levsen, G.
Birkl, and W. Ertmer, Phys. Rev. Lett. 85, 3121
(2000)
Optical Lattice & Wave Packet
Optical lattices are periodic
potentials formed by the ac
Stark shift (light shift) seen by
atoms when they interact with
a set of interfering laser beams.
I. H. Deutsch and P. S. Jessen, Phys. Rev. A 57, 1972(1998).
Motional atoms in optical lattice
Motional wave packets in optical lattice
Experimental Setup: Vertical Optical Lattice
AOM2
PBS
TUI
Amplifier
Grating Stabilized Laser
AOM1

PBS
85Rb
Cold
atoms
T ~ 8μK
Lattice spacing ~ 0.93μm
Spatial filter
Function
Generator
PBS
Controlling phase of AOMs
allows control of lattice
position
Measuring State Population
Thermal state
Initial Lattice
Ground State
1st Excited State
After adiabatic decrease
Well
Depth
Isolated ground state
0
t1
t(ms)
Preparing a ground state
t1+40
2 bound states
1 bound state
7 ms
0
t1
t1+40
Measuring Coherence: Oscillations in the Lattice
P0
y = m3*sin(m0*2*3.14/m1+m2)*...
0.8
0.7
Value
208.54
1.801
0.33918
0.46156
238.96
0.43667
0.9413
Error
1.1254
0.027114
0.0072664
0.0015033
5.6669
NA
NA
dephasing due to lattice
depth inhomogeneities ~ T2*
m1
m2
m3
m4
m5
Chisq
R
decaying oscillations
0.6
0.5
0.4
w
0.3
0.2
200
400
600
800 1000 1200 1400 1600
t(μs)
coherence preparation shift
0
t=0
v
θ
t
t
measurement shift
u
Anatomy of an Echo
0.8
original oscillation
0.7
0.6
oscillation from echo pulse
0.5
0.4
0.3
0.2
0.1
the echo itself
0
0
500
1000
1500
2000
2500
t
Dephasing due to primarily lattice inhomogeneities
Echo in the Lattice
(using lattice shifts and delays as coupling pulses)
θ
0
1
echo (amp. ~ 9%) ; max. 13%
(see also Buchkremer
et. al. PRL 85, 3121(2000))
single shift
t
Losssingle~80%
0.8
θ
0
echo (amp. ~ 16%)
0.6
double shift + delay
tp~ (2/5 T)
t
0.4
0
0.2
Lossdouble~60%
θ
echo (amp. ~ 19%)
rms~ (T/8)
t(s) 1000 1200 1400 1600 1800 2000 2200 2400
Uo =18ER ,T = 190μs, tpulse-center = 900s
Gaussian pulse
t
LossGaussian~45%
Preliminary data on Coherence time in 1D and 3D Lattice
0.08
1D
0.07
echo amplitude
3D
0.06
0.05
0.04
0.03
0.02
0.01
0
2000
2200
2400
2600
2800
echo at (s)
Decoherence due to
• transverse motion of atoms
• inter-well tunneling,
3000
3200
2D Fourier Spectroscopy
echo pulse
apply exc
detect det
echo pulse
detect det
apply exc
memory
det
det
memory
exc

1
T2*
exc
drive freq. [Hz]
Initial Results
observed oscillation freq. [Hz]
driven ‘monochromatically’ with 10 cycles
What if we try “bang-bang”?
(Repeat pulses before the bath gets amnesia; trade-off since each pulse
is imperfect.)
“bang-bang” pulse sequences...
Some coherence out to > 3 ms now...
Summary
• Optimisation of certain class of echo pulses
• Preliminary work on 3D lattice
• Preliminary work on characterization of frequency
response of the system due to Quasimonochromatic excitation
• Observation of higher-order Echoes
Future work
• Characterize homogeneous and inhomogeneous
broadening through 2D FT spectroscopy
• Design adiabatic pulses for inversion of states
• Study decoherence due to tunneling