Lean Thinking
Download
Report
Transcript Lean Thinking
Managing Flow Variability
Process Capability
A Statement for Quality Goes Here
These sides and note were prepared using
1. Managing Business Flow processes. Anupindi, Chopra, Deshmukh, Van Mieghem,
and Zemel.Pearson Prentice Hall.
2. Few of the graphs of the slides of Prentice Hall for this book, originally prepared by
professor Deshmukh.
Fraction of Output within Specifications
The fraction of the process output that meets customer
specifications. We can compute this fraction by: the histogram
of the actual observation, or using Normal distribution.
Ex. 9.7: US: 85kg; LS: 75 kg (the range of performance variation
that customer is willing to accept).
Histogram: In an observation of 100 samples, the process is 74%
capable of meeting customer requirements, and 26%
defectives!!!
Assume door weight , W, follows Normal random variable with mean
= 82.5 kg and standard deviation at 4.2 kg,
Prob (75 ≤ W ≤ 85) = Prob (W ≤ 85) - Prob (W ≤ 75) =
Prob ((75-82.5)/4.2 ≤ z ≤ (85-82.5)/4.2 ) =
Prob (Z≤.5952) = .724, Prob (Z ≤ -1.79) = .0367
Prob (75 ≤ W ≤ 85) = 0.724 - 0.0367 = .6873
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
2
9.4.1 Fraction of Output within Specifications
SO with normal approximation, the process is capable of
producing 69% of doors within the specifications, or delivering
31% defective doors!!!
Specifications refer to individual doors, not AVERAGES.
We cannot comfort customer that there is a 30% chance that
they’ll get doors that is either too light or too heavy!!!
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
3
Process Capability Ratios (Cpk and Cp)
Process capability ratio, Cpk , his measure is based on
the observation that for a normal distribution, if the
mean is 3 standard deviations above the lower
specification LS (or below the upper specification US),
there is very little chance of a product characteristic
falling below LS (or above US).
Compute (US –)/3 and ( – LS)/3
The higher these values, the more capable the
process is in meeting specifications.
Cpk = min [(US – )/3, ( – LS)/3]
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
4
9.4.2 Process Capability Ratios (C pk and Cp)
Cpk of 1+- represents a capable process
Not too high (or too low)
Lower values = only better than expected quality
Ex: processing cost, delivery time delay, or # of error per
transaction process
If the process is properly centered
Cpk is then either:
(US- μ)/3σ or (μ -LS)/3σ
As both are equal for a centered process.
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
5
9.4.2 Process Capability Ratios (C pk and Cp) cont…
Therefore, for a correctly centered process, we may simply define the process
capability ratio as:
Cp = (US-LS)/6σ
(.3968, as calculated later)
Numerator = voice of the customer / denominator = the voice of the process
Recall: with normal distribution:
Most process output is 99.73% falls within +-3σ from the μ.
Consequently, 6σ is sometimes referred to as the natural tolerance of the process.
Ex: 9.8
Cpk = min[(US- μ)/3σ , (μ -LS)/3σ ]
= min {(85-82.5)/(3)(4.2)], (82.5-75)/(3)(4.2)]}
= min {.1984, .5952}
=.1984
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
6
9.4.2 Process Capability Ratios (C pk and Cp)
If the process is correctly centered at μ = 80kg (between 75 and 85kg), we
compute the process capability ratio as
Cp = (US-LS)/6σ
= (85-75)/[(6)(4.2)]
= .3968
NOTE: Cpk = .1984 (or Cp = .3968) does not mean that the process is
capable of meeting customer requirements by 19.84% (or 39.68%), of the
time. It’s about 69%.
Defects are counted in parts per million (ppm) or ppb, and the process is
assumed to be properly centered. IN THIS CASE, If we like no more than
100 defects per million (.01% defectives), we SHOULD HAVE the
probability distribution of door weighs so closely concentrated around the
mean that the standard deviation is 1.282 kg, or Cp=1.3 (see Table 9.4)
Test: σ = (85-75)/(6)(1.282)] = 1.300kg
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
7
Table 9.4
Table 9.4 Relationship Between Process Capability Ratio and Proportion Defective
Defects (ppm)
10000
1000
100
10
1
2 ppb
Cp
0.86
1
1.3
1.47
1.63
2
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
8
9.4.3 Six-Sigma Capability
The 3rd process capability
Known as Sigma measure, which is computed as
S = min[(US- μ /σ), (μ -LS)/σ] (= min(.5152,1.7857) = .5152 to be calculated later)
S-Sigma process
If process is correctly centered at the middle of the specifications,
S = [(US-LS)/2σ]
Ex: 9.9
Currently the sigma capability of door making process is
S=min(85-82.5)/[(2)(4.2)] = .5952
By centering the process correctly, its sigma capability increases to
S=min(85-75)/[(2)(4.2)] = 1.19
THUS, with a 3σ that is correctly centered, the US and LS are 3σ away from the
mean, which corresponds to Cp=1, and 99.73% of the output will meet the
specifications.
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
9
9.4.3 Six-Sigma Capability cont…
SIMILARLY, a correctly centered six-sigma process has a standard deviation so
small that the US and LS limits are 6σ from the mean each.
Extraordinary high degree of precision.
Corresponds to Cp=2 or 2 defective units per billion produced!!! (see Table 9.5)
In order for door making process to be a six-sigma process, its standard deviation
must be:
σ = (85-75)/(2)(6)] = .833kg
Adjusting for Mean Shifts
Allowing for a shift in the mean of +-1.5 standard deviation from the center of
specifications.
Allowing for this shift, a six-sigma process amounts to producing an average of 3.4
defective units per million. (see table 9.5)
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
10
Table 9.5
Table 9.5 Fraction Defective and Sigma Measure
Sigma S
3
4
5
Capability Ratio Cp
1
1.33
1.667
Defects (ppm)
66810
6210
233
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
6
2
3.4
11
9.4.3 Six-Sigma Capability cont…
Why Six-Sigma?
See table 9.5
Improvement in process capabilities from a 3-sigma to 4-sigma = 10-fold
reduction in the fraction defective (66810 to 6210 defects)
While 4-sigma to 5-sigma = 30-fold improvement (6210 to 232 defects)
While 5-sigma to 6-sigma = 70-fold improvement (232 to 3.4 defects, per
million!!!).
Average companies deliver about 4-sigma quality, where best-in-class companies
aim for six-sigma.
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
12
9.4.3 Six-Sigma Capability cont…
Why High Standards?
-
The overall quality of the entire product/process that requires ALL of them to
work satisfactorily will be significantly lower.
Ex:
If product contains 100 parts and each part is 99% reliable, the chance that the
product (all its parts) will work is only (.99)100 = .366, or 36.6%!!!
Also, costs associated with each defects may be high
Expectations keep rising
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
13
9.4.3 Six-Sigma Capability cont…
Safety capability
- We may also express process capabilities in terms of the desired margin [(US-LS)zσ] as safety capability
- It represents an allowance planned for variability in supply and/or demand
- Greater process capability means less variability
- If process output is closely clustered around its mean, most of the output will fall
within the specifications
- Higher capability thus means less chance of producing defectives
- Higher capability = robustness
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
14
9.4.4 Capability and Control
So in Ex. 9.7: the production process is not performing well in terms of MEETING
THE CUSTOMER SPECIFICATIONS. Only 69% meets output specifications!!!
(See 9.4.1: Fraction of Output within Specifications)
Yet in example 9.6, “the process was in control!!!”, or WITHIN US & LS LIMITS.
Meeting customer specifics: indicates internal stability and statistical predictability
of the process performance.
In control (aka within LS and US range): ability to meet external customer’s
requirements.
Observation of a process in control ensures that the resulting estimates of the
process mean and standard deviation are reliable so that our measurement of the
process capability is accurate.
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
15
9.5 Process Capability Improvement
Shift the process mean
Reduce the variability
Both
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
16
9.5.1 Mean Shift
Examine where the current process mean lies in comparison to the specification
range (i.e. closer to the LS or the US)
Alter the process to bring the process mean to the center of the specification range
in order to increase the proportion of outputs that fall within specification
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
17
Ex 9.10
MBPF garage doors (currently)
-specification range: 75 to 85 kgs
-process mean: 82.5 kgs
-proportion of output falling within specifications: .6873
The process mean of 82.5 kgs was very close to the US of 85 kgs (i.e. too
thick/heavy)
To lower the process mean towards the center of the specification range the
supplier could change the thickness setting on their rolling machine
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
18
Ex 9.10 Continued
Center of the specification range: (75 + 85)/2 = 80 kgs
New process mean: 80 kgs
If the door weight (W) is a normal random variable, then the proportion of doors
falling within specifications is: Prob (75 =< W =< 85)
Prob (W =< 85) – Prob (W =< 75)
Z = (weight – process mean)/standard deviation
Z = (85 – 80)/4.2 = 1.19
Z = (75 – 80)/4.2 = -1.19
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
19
Ex 9.10 Continued
[from table A2.1 on page 319]
Z = 1.19
Z = -1.19
(1 - .8830)
.8830
.1170
Prob (W =< 85) – Prob (W =< 75) =
.8830 - .1170 = .7660
By shifting the process mean from 82.5 kgs to 80 kgs, the proportion of garage
doors that falls within specifications increases from .6873 to .7660
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
20
9.5.2 Variability Reduction
Measured by standard deviation
A higher standard deviation value means higher variability amongst outputs
Lowering the standard deviation value would ultimately lead to a greater
proportion of output that falls within the specification range
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
21
9.5.2 Variability Reduction Continued
Possible causes for the variability MBPF experienced are:
-old equipment
-poorly maintained equipment
-improperly trained employees
Investments to correct these problems would decrease variability however doing
so is usually time consuming and requires a lot of effort
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
22
Ex 9.11
Assume investments are made to decrease the standard deviation from 4.2 to 2.5
kgs
The proportion of doors falling within specifications:
Prob (W =< 85) – Prob (W =< 75)
Z = (weight – process mean)/standard deviation
Z = (85 – 80)/2.5 = 2.0
Z = (75 – 80)/2.5 = -2.0
Quality – Process Capability
Ardavan Asef-Vaziri
Prob (75 =< W =< 85)
Jan-2012
23
Ex 9.11 Continued
[from table A2.1 on page 319]
Z = 2.0
Z = -2.0
(1 - .9772)
.9772
.0228
Prob (W =< 85) – Prob (W =< 75) =
.9772 - .0228 = .9544
By shifting the standard deviation from 4.2 kgs to 2.5 kgs and the process mean
from 82.5 kgs to 80 kgs, the proportion of garage doors that falls within
specifications increases from .6873 to .9544
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
24
9.5.3 Effect of Process Improvement on Process
Control
Changing the process mean or variability requires re-calculating the control limits
This is required because changing the process mean or variability will also change
what is considered abnormal variability and when to look for an assignable cause
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
25
9.6 Product and Process Design
Reducing the variability from product and process design
-simplification
-standardization
-mistake proofing
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
26
Simplification
Reduce the number of parts (or stages) in a product (or process)
-less chance of confusion and error
Use interchangeable parts and a modular design
-simplifies materials handling and inventory control
Eliminate non-value adding steps
-reduces the opportunity for making mistakes
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
27
Standardization
Use standard parts and procedures
-reduces operator discretion, ambiguity, and opportunity for making mistakes
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
28
Mistake Proofing
Designing a product/process to eliminate the chance of human error
-ex. color coding parts to make assembly easier
-ex. designing parts that need to be connected with perfect symmetry or with
obvious asymmetry to prevent assembly errors
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
29
9.6.2 Robust Design
Designing the product in a way so its actual performance will not be affected by
variability in the production process or the customer’s operating environment
The designer must identify a combination of design parameters that protect the
product from the process related and environment related factors that determine
product performance
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
30
QUESTIONS
???
Quality – Process Capability
Ardavan Asef-Vaziri
Jan-2012
31