Transcript powerpoint
3.5 Chebyshev’s Rule and the
Empirical Rule
Objectives:
By the end of this section, I will be
able to…
1)
Calculate percentages using Chebyshev’s
Rule.
2)
Find percentages and data values using the
Empirical Rule.
CHEBYSHEV’S THEOREM
Chebyshev's Theorem
The Russian mathematician P.L. Chebyshev (18211894) proved a theorem which is valid for any
distribution of data:
𝒙−𝒙
𝒌=
𝒔
Let 𝑘 ≥ 1.
Then the % of distribution that lies within "k"
1
SDs of the 𝑥 is at least 1 − 2 100.
𝑘
NORMAL DISTRIBUTION
IQ scores, heights, weights are all examples of
normal distributions.
Chebyshev’s Theorem
Why is this theorem used?
It can be used for samples or populations.
-5
75 +5
What is the mean? 75
What is the standard deviation?
5
Easy Problem
1) Professor Costag is analyzing the grades
from his Statistics course. The average
grade was an 85 with a standard deviation of
3 points. What scores represent the scores
within 2 standard deviations of the mean?
- 2 s.d
79
85
𝒙
+ 2 s.d.
to
91
A little tougher…
k = 3.33
Using the previous example, find the
percentage of students who will score
between 75 and a 95. Remember the
mean is 85 with s = 3.
WE NEED TO FIND k. Clue word is “percentage”
To find k use the following formula:
3.33
3.33
k = 3.33
A little tougher…
Using the previous example, find the
percentage of students who will score
between 75 and a 95. Remember the
mean is 85 with s = 3.
Now use Chebyshev’s Theorem.
k = 3.33
90.999% or 91%
Empirical Rule
Metaphorically, the Empirical Rule is a
Porshe compared to Chebyshev’s Rule,
which is a go-anywhere ATV.
Basically if you have data that is skewed
or an unknown relationship, use
CHEBYSHEV’S.
If your distribution is bell shaped (normal)
use EMPIRICAL.
EMPIRICAL RULE
If
the data distribution is normal (bell
shaped):
68% of the data values will fall within 1
standard deviation of the x.
95% will fall within 2 SDs of the x.
99.7% will fall within 3 SDs of the x.
You still start using Chebyshev’s, it will just
end up being one of these values.
EMPIRICAL RULE
If
the data distribution is normal (bell
shaped):
68%
95%
99.7%
THESE ARE
YOUR ANSWERS!!!!!
Practice Problem with Empirical Rule
Your GPAs are bell-shaped with a mean of 3.1
and a standard deviation of 0.7. Find the
proportion of GPAs between 2.4 and 3.8.
WE NEED TO FIND k.
To find k use the following formula:
Since k = 1, 68% of
1
the students are within
k = 1 1 standard deviation of
3.1, the mean.
1
Practice
Complete the following two problems.
SHOW ALL YOUR WORK!
ChebyEmpirical