Transcript Slide 1

“Advanced General Chemistry”
Chemistry 201
Prof. Gordie Miller
Websites:
http://avogadro.chem.iastate.edu/chem201/
WebCT: https://webct.its.iastate.edu/
Teaching Assistants:
Daping Jing (Sect. 5 & 6; Chem 201L: Sect. 3 & 5)
Philip Carlson (Sect. 4; Chem 201L: Sect. 4 & 6)
Wednesdays:
Sect. 4 in 1801 Gilman; Sect. 5 & 6 in 1114 Gilman
Exam Dates:
Final:
Resources:
E-Resources for Chemistry (Library Website)
Handbook of Chemistry & Physics (CRC Handbook)
Please show respect to your colleagues: Turn off cell phones, put aside the Daily, do not use iPods, laptops,
or other devices for messaging, facebook, internet browsing, etc. during lectures and recitations.
1
Department of Chemistry Fall Convocation
Friday, August 27, 2010; 2:10 p.m.
1352 Gilman Hall
“Atoms, Molecules and Bonds, a Multidisciplinary Journey, 400 B.C. to 2000 A.D.”
Prof. Klaus Ruedenberg
Department of Chemistry
Iowa State University
2
Chemical Fundamentals: Introduction
Importance of Chemistry in Our Society
• Health Issues:
• Energy Issues:
Research at ISU
Ames Laboratory (US DOE)
Catron Center for Solar Energy Research
Center for Catalysis
Center for Physical and Computational Mathematics
Center for Sustainable Environmental Technologies
Materials Preparation Center
Microelectronics Research Center
Midwest Forensics Resource Center
• Environmental Issues:
Beyond the Molecular Frontier, National Research Council, 2003
3
Chemical Fundamentals: Matter
(1) Taxonomy
Pure Substances
Mixtures
4
Chemical Fundamentals: Matter
(2) Scale and States
• Nuclear:
protons + neutrons
• Atomic:
nucleus + electrons
• Molecular:
aggregates of atoms
• Nanoscale:
oligomers, macromolecules
• Microscopic:
polymers, small crystals
• Macroscopic:
bulk materials, powders
5
Chemical Fundamentals: Matter
(2) Scale and States
Carbon Dioxide
• Solids:
• Liquids:
• Gases:
• Plasmas:
• Supercritical Fluids:
6
Chemical Fundamentals: Matter
(3) Properties of Matter
Physical Properties:
“Measured without changing the identity of the substance”
Chemical Properties:
CaC2(s) + H2O(l)  CaO(s) + C2H2(g)
2 C2H2(g) + 5 O2(g)  4 CO2(g) + 2 H2O(l)
7
Chemical Fundamentals: Measurements
(4) Units
SI Units: Seven fundamental quantities
1.
2.
3.
4.
5.
6.
7.
Length (Meter)
Mass (Kilogram)
Time (Second)
Temperature (degree Kelvin)
Amount (Mole)
Electric Current (Ampere)
Luminous Intensity (Candela)
Density =
Energy =
8
Chemical Fundamentals: Measurements
(5) Error
• Systematic (Determinate) Error
• Random (Indeterminate) Error
Source: H. Joyce, Millenium Mathematics Project
Gaussian Distribution
Curve Fitting (Regression)
(Propagation of Error)
P(x)
0.8
 = 0.5
0.6
0.4
 = 1.0
0.2
 = 2.0
0.0
-6
-4
-2
0
2
4
6
x
Mean Value: x
Standard Deviation: 
Source: J. Schreiner, MPI-Kernphysic
X. Peng, et al., Nature 404, 59-61(2000)
9
Chemical Fundamentals: Measurements
(6) Precision vs. Accuracy
Standard Deviation
(1)
Mean Value =?= True Value
(2)
(3)
10
Chemical Fundamentals: Measurements
(7) Significant Figures
For each scale, report the value using the appropriate number of significant
figures.
11
Chemical Fundamentals: Atoms, Molecules, …
(1) Important Experiments
• Faraday’s Experiments:
• Thomson’s Experiment:
Source: Atom – The Incredible World
• Milliken’s Oil-Drop Experiment:
Source: Atom – The Incredible World
12
Chemical Fundamentals: Atoms, Molecules, …
(1) Important Experiments
• Rutherford’s Experiment:
Source: Encyclopedia of Science
• Stern-Gerlach Experiment:
Source: Atom – The Incredible World
13
Chemical Fundamentals: Atoms, Molecules, …
(2) Atomic Structure
Symbol
Mass
(g)
Charge
(coul)
Spin
(Jsec)
Proton
1
1
p
1.672  1024
(1)
1.602  1019
(+1)
5.273  1035
(1/2)
Neutron
1
0
n
1.674  1024
(1)
0.000  1019
(0)
5.273  1035
(1/2)
Electron
0
1
9.109  1028
(“0”)
1.602  1019
(1)
5.273  1035
(1/2)
e
• ATOM =
• NUCLEUS =
Source: Dr. R.F.W. Bader, McMaster University, Canada.
14
Chemical Fundamentals: Atoms, Molecules, …
(2) Atomic Structure
A
Z
Sy  A Sy
Some key consequences:
• # Protons (Z) –
• # Electrons =
Core electrons
Valence electrons
• # Neutrons
Stability of Isotopes
# Stable Isotopes
Protons
Neutrons
157
Even
Even
Source: www.mc.maricopa.edu/~gilletti/CHM152/NUCLEAR.ppt
53
Even
Odd
50
Odd
Even
5
Odd
Odd
15
Chemical Fundamentals: Atoms, Molecules, …
(2) Atomic Structure
Stability of Isotopes: Radioactive Decay
Alpha emission ( particle = 4He nucleus)
Beta emission ( particle = electron)
Gamma radiation ( = high energy photons)
Positron emission (mass of electron; positive charge)
Electron (core) capture
16
Chemical Fundamentals: Atoms, Molecules, …
(2) Atomic Structure
Stability of Isotopes
EB /A
Source: http://www.alaskajohn.com/physics/charts/binding_energy.jpg
17
Chemical Fundamentals: Atoms, Molecules, …
(2) Atomic Structure
Spin: response to a magnetic field
E.g. 1H is a single proton (spin = 1/2)
Nuclear Magnetic Resonance (MRI) – organic and biomolecules…
(Klaus Schmidt-Rohr)
2H
(= D, deuterium) is a proton + neutron (spin = 1)
has different spin-derived physical properties than 1H
Chemical Properties: not significantly affected by isotopes, but …
It takes more energy to break an OD chemical bond than an OH bond. Why?
HOH
vs.
DOD
18
Chemical Fundamentals: Atoms, Molecules, …
(3) Atomic Mass
Standard:
12C
atom
Mass of 12C atom (6 protons, 6 neutrons, 6 electrons)
1 amu = 1.661  1024 g
Many atomic masses are close to integer values, e.g.,
N (14.007 amu)
Ca (40.078 amu)
Some are not close to integers, e.g.,
Why not?
Cl (35.453 amu)
Isotopes
% / (100%) =
Isotope Mass
35Cl
37Cl
19
Chemical Fundamentals: Atoms, Molecules, …
(3) Atomic Mass
GC/LC-MS/MS
Mass Spectrometer
Source: http://www.epa.gov
Source: http://history.nasa.gov
20
Chemical Fundamentals: Atoms, Molecules, …
(3) Atomic Mass
Intensity of Signal (% Molecules)
60
Mass Spectrum of Cl2
50
Let
x = abundance of 35Cl
y = abundance of 37Cl
40
30
20
10
0
68
69
70
71
72
73
74
75
76
Mass Number
Isotope
Abundance
21
Chemical Fundamentals: Atoms, Molecules, …
(4) Microscopy: Can we “see” atoms?
Electron Microscope
To “see” atoms, need light
with wavelength ca. 0.1 nm (X-rays)
Optical Microscopes:
Electron Microscopes:
Ames Laboratory, US Department of Energy
Wilhelm Hall
Advantages:
Disadvantages:
22
Chemical Fundamentals: Atoms, Molecules, …
(4) Electron Microscopy: SEM vs. TEM
Incident e Beam
Backscattered e
X-rays
Cathodaluminescence
Secondary e
Auger e
SAMPLE
Inelastically Scattered e
Elastically Scattered e
Unscattered e
23
Chemical Fundamentals: Atoms, Molecules, …
(4) Electron Microscopy: SEM
Backscattered e:
Incident e Beam
Backscattered e
X-rays
Auger e
Secondary e:
Cathodaluminescence
Secondary e
Auger e & X-rays:
SAMPLE
Factors affecting Image Brightness
Al-Cu alloy.
24
Chemical Fundamentals: Atoms, Molecules, …
(4) Electron Microscopy: SEM
Incident Electron Beam
Auger
e
Secondary e
Backscattered e
Range of X-rays
25
Chemical Fundamentals: Atoms, Molecules, …
(4) Electron Microscopy: TEM
Incident e Beam
SAMPLE
Inelastically Scattered e
Elastically Scattered e
Elastically scattered e:
Unscattered e
Inelastically scattered e:
26
Chemical Fundamentals: Atoms, Molecules, …
(4) Electron Microscopy: Examples
Semiconductor Chip
(ca. 100  150 m2)
Powder Particle (Quasicrystal: Y-Mg-Zn)
ca. 30 m radius
Source: ISU Dept. of Materials Science and Engineering
27
Chemical Fundamentals: Atoms, Molecules, …
(4) Electron Microscopy: Carbon Nanotubes
SEM Images
TEM Image
ca. 60  80 m2
10 nm inner diameter
9 concentric walls
Source: http://www.nano-lab.com/imagegallery.html
ca. 1.5  2 m2 (1500  2000 nm2)
28
Chemical Fundamentals: Atoms, Molecules, …
(4) Electron Microscopy: Material Issues in Nuclear Reactors
Pressurized water in a closed coolant loop carries intense
heat generated by fission reactions in nuclear fuel rods (in
the reactor core) to steam generators. There, heat is
transmitted to water in a separate closed loop to form steam,
which drives the turbine (to generate electricity), cools,
condenses, and returns to the steam generators.
To stainless steel specimens exposed to a
nuclear reactor environment, an oxygen
weight difference of just 0.04% causes the
oxygen-richer material (bottom) to become
brittle and pocked with micrometer-sized
grains. The other sample retains its
structural integrity, as seen in these SEM
images.
29
Chemical Fundamentals: Atoms, Molecules, …
(4) Microscopy: Imaging Techniques
Source: A. B. Ellis, ACS, 1993
30
Chemical Fundamentals: Atoms, Molecules, …
(4) Microscopy: Imaging Techniques
STM Tip
(200 kV incident electrons)
Bar length: ca. 20 nm
Source: TU-Vienna
Source: Purdue Univ.
31
Chemical Fundamentals: Atoms, Molecules, …
(4) Microscopy: Imaging Techniques -- STM
S8
Source: M.D. Porter, ISU
32
Chemical Fundamentals: Atoms, Molecules, …
(4) Microscopy: Imaging Techniques -- Lithography
Subsurface H atoms in Pd – PSU arises from Pd atoms rising to make “room” for
interstitial H atoms. H atoms find sites by using voltage impulses from an STM tip.
Letter height = ca. 0.3 Å; Letter width = ca. 40 Å.
Image by: E. H. Sykes, L. Fernandez, B. A. Mantooth, P. Weiss
33
Chemical Fundamentals: Atoms, Molecules, …
(4) Microscopy: Improved AFM Capabilities
C22H14
Scanning tunneling microscopy (STM) has limited
ability to distinguish individual atoms and bonds. In
the past, AFM has done no better at resolving
atomic-scale features, producing only fuzzy images
of individual molecules.
CO-tip AFM image (bottom) reveals
atoms and bonds of pentacene (top),
whereas conventional STM image
(center) cannot. Scale bars are 5 Å.
Chemical and Engineering News, August 31, 2009, p. 6
Gross, et al. Science 2009, 325, 1110
34
Chemical Fundamentals: Atoms, Molecules, …
(5) The Periodic Table
H
He
Li
Be
B
C
N
O
F
Ne
Na
Mg
Al
Si
P
S
Cl
Ar
K
Ca
Sc
Ti
V
Cr
Mn
Fe
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Br
Kr
Rb
Sr
Y
Zr
Nb
Mo
Tc
Ru
Rh
Pd
Ag
Cd
In
Sn
Sb
Te
I
Xe
Cs
Ba
La
Hf
Ta
W
Re
Os
Ir
Pt
Au
Hg
Tl
Pb
Bi
Po
At
Rn
Fr
Ra
Ac
Rf
Db
Sg
Bh
Hs
Mt
110
111
112
Lanthanides:
Ce
Pr
Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
Actinides:
Th
Pa
U
Np
Pu
Am
Cm
Bk
Cf
Es
Fm
Md
No
Lr
Metals
Metalloids
(Semiconductors)
Nonmetals
35
Chemical Fundamentals: Atoms, Molecules, …
(6) Combining Atoms: Do free atoms exist?
H
He
Li
Be
B
C
N
O
F
Ne
Na
Mg
Al
Si
P
S
Cl
Ar
K
Ca
Sc
Ti
V
Cr
Mn
Fe
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Br
Kr
Rb
Sr
Y
Zr
Nb
Mo
Tc
Ru
Rh
Pd
Ag
Cd
In
Sn
Sb
Te
I
Xe
Cs
Ba
La
Hf
Ta
W
Re
Os
Ir
Pt
Au
Hg
Tl
Pb
Bi
Po
At
Rn
Fr
Ra
Ac
Rf
Db
Sg
Bh
Hs
Mt
110
111
112
Ce
Pr
Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
Th
Pa
U
Np
Pu
Am
Cm
Bk
Cf
Es
Fm
Md
No
Lr
Aggregates:
• Diatomic Molecules
• Rings or Chains
• Layers
• Three-dimensional Nets
• Three-dimensional Sphere Packings
(Everything else…)
36
Chemical Fundamentals: Atoms, Molecules, …
(6) Combining Atoms: Ions
Two atoms interact with each other by…
(a)
(b)
H
He
Li
Be
B
C
N
O
F
Ne
Na
Mg
Al
Si
P
S
Cl
Ar
K
Ca
Sc
Ti
V
Cr
Mn
Fe
Co
Ni
Cu
Zn
Ga
Ge
As
Se
Br
Kr
Rb
Sr
Y
Zr
Nb
Mo
Tc
Ru
Rh
Pd
Ag
Cd
In
Sn
Sb
Te
I
Xe
Cs
Ba
La
Hf
Ta
W
Re
Os
Ir
Pt
Au
Hg
Tl
Pb
Bi
Po
At
Rn
Fr
Ra
Ac
Rf
Db
Sg
Bh
Hs
Mt
110
111
112
2
1
0
+1
+2
+3
Ce
Pr
Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
Th
Pa
U
Np
Pu
Am
Cm
Bk
Cf
Es
Fm
Md
No
Lr
“Cations” (net positive charge)…
“Anions” (net negative charge)…
Polyatomic Ions:
37
Chemical Fundamentals: Atoms, Molecules, …
(7) Chemical Formulas (Symbolism)
(a) Empirical Formulas –
(b) Molecular Formulas –
(c) Metallurgical Formulas –
(8) Nomenclature: see pages 1-24 to 1-27 in 201 Notes
38