8. digital-filtersx - essie-uf
Download
Report
Transcript 8. digital-filtersx - essie-uf
DIGITAL FILTERS
yn
M
h
k x nk
k M
M
h
nk x k
,
n 0, 1, , N 1
k M
h = time invariant weights (IMPULSE RESPONSE FUNCTION)
2M + 1 = # of weights
N = # of data points
Impulse Response :
Box Car filter
1
hk
2M 1
Running Mean
Moving Average
2M
k 0
hk 1
M = 48
M = 49
M = 50
yn
M
h x
k
k 0
nk
x n k ,
n 0, 1, , N 1
c sin( k / M ) sin( kc / N )
hk
N k / M
kc / N
Impulse Response:
Normalized SINC
function windowed by
the Lanczos window
M is the filter length (# of
weights or filter coefficients)
N is the sampling
frequency = 2π/Δt
c is the cut-off frequency =
2π/Tc
repeat
wrap
High-pass filtered : Original – Low-Pass
Fourier Transform of yn
yn
M
h
k x nk
Y
k M
M
y n e i n t
nM
M
hk e i k t
k M
M
x nk e
i n k t
nM
H X
Convolution in time domain corresponds to multiplication in frequency domain
M
H hk e i k t
k M
Y
X
Frequency Response or Transfer Function or Admittance Function
H
Low-pass:
1 @ c
H
0 @ c
1
Pass
Band
0
Stop
Band
c
N
High-pass:
H
0 @
H
1 @
c
c
1
Pass
Band
Stop
Band
0
c
N
1 @ c1 c 2
0 otherwise
Band-pass: H
H
1
Stop
Band
0
Pass
Band
c1
Stop
Band
c2
N
Band-pass filtered
1) High-pass to cut-off the upper bound period (e.g. 18 hrs)
2) Low-pass to cut-off the lower bound period (e.g. 4 hrs)
Gibbs’ Phenomenon
H
M
h e
i k t
k
k M
H( )
Frequency Response or Transfer Function
(for Running Mean)
M>M>M
/ N
c
hk
N
sin( k / M ) sin( kc / N )
k
/
M
k
/
c
N
sin( k / M )
Lanczos
k / M
0.54 .46 cos( k / M ) Hamming
()
Lynch (1997, Month. Wea. Rev., 125, 655)
Butterworth Filter
H
2
q=4
1
1 c 2q
q = 10
q=1
http://cnx.org/content/m10127/latest/
Exercises
http://www.falstad.com/dfilter/