Transcript Chapter 1
Chapter 1
Chemistry and
Measurement
Dr. S. M. Condren
Chemistry
• What is it?
• Why do we study it?
Dr. S. M. Condren
Physical States
• solid
– fixed volume and shape
Dr. S. M. Condren
Physical States
• solid
– fixed volume and shape
• liquid
– fixed volume
– shape of container, horizontal top surface
Dr. S. M. Condren
Physical States
• solid
– fixed volume and shape
• liquid
– fixed volume
– shape of container, horizontal top surface
• gas
– takes shape and volume of container
Dr. S. M. Condren
Physical States
• solid
– fixed volume and shape
• liquid
– fixed volume
– shape of container, horizontal top surface
• gas
– takes shape and volume of container
• liquid crystal
– some characteristics of solid and some of liquid states
Dr. S. M. Condren
Modern Chemistry:
A Brief Glimpse
Dr. S. M. Condren
“Exploring the Nanoworld”
To order a kit (Special introductory price, $24 shipped to US
addresses) contact the Institute for Chemical Education
Dr. S. M. Condren
Air Bags: How Do They Work?
http://whyfiles.news.wisc.edu/032air_bag/how_work.html
Dr. S. M. Condren
Matter
• has mass
• mass vs. weight
• occupies space
Dr. S. M. Condren
Scientific Method
• Experiment
• Results
• Hypothesis
– further experiments
– refine the hypothesis
• Theory
– experiments to test the theory
– refine the theory
Dr. S. M. Condren
Law of Conservation of Mass
In an ordinary chemical reaction matter is
neither created nor destroyed.
The sum of the masses of the reactants equals
the sum of the masses of the products.
Dr. S. M. Condren
Properties of Matter
Extensive Property
• depends on specific
sample under
investigation
• examples:
– mass and volume
Intensive Property
• identical in all samples
of the substance
• examples:
– color, density, melting
point, etc.
Dr. S. M. Condren
Physical Property
• one that can be observed without changing
the substances present in the sample
• changes in physical properties of
substances
Dr. S. M. Condren
Chemical Property
• the tendency to react and form new
substances
Dr. S. M. Condren
Chemical Reaction
• reactants undergo chemical change to
produce products
sucrose ---> carbon + water
reactant
products
Dr. S. M. Condren
Chemical Reaction
Reactions are indicated by:
• evolution of a gas
• change of color
• formation of a precipitate
Dr. S. M. Condren
Law of Definite Proportions
• All samples of the same pure substance
always contain the same elements in the
same proportions by weight
Dr. S. M. Condren
Pure Substances
Elements
Compounds
Dr. S. M. Condren
Mixtures
Heterogeneous
• uneven texture
Homogeneous (Solution)
• sample uniform throughout
Dr. S. M. Condren
Dr. S. M. Condren
Separation of Mixtures
• filtration
• distillation
• chromatography
Dr. S. M. Condren
Filtration
• separate solids by
differences in melting
points
• separate solids by
differences in solubility
(fractional crystallization)
• mechanical separation such
as in Fig. 1.11 page 13.
Dr. S. M. Condren
Distillation
• separation by differences in boiling point
(fractional distillation)
– distillate
– distillation
• fractionating column - part of apparatus where
separation occurs
Dr. S. M. Condren
Dr. S. M. Condren
Chromatography
•
•
•
•
•
•
liquid-column
paper
thin-layer (TLC)
gas
HPLC
electrophoresis (DNA mapping)
Dr. S. M. Condren
Column Chromatography
Dr. S. M. Condren
Paper Chromatography of Inks
Dr. S. M. Condren
Dr. S. M. Condren
Uncertainty in Measurements
Accuracy
closeness to true value
vs
Precision
reproducibility
Dr. S. M. Condren
Accurate and/or Precise?
Dr. S. M. Condren
Accurate and/or Precise?
Dr. S. M. Condren
Significant Figures
Rules for determining which digits are significant:
• All non-zero numbers are significant
• Zeros between non-zero numbers are significant
• Zeros to the right of the non-zero number and to
the right of the decimal point are significant
• Zeros before non-zero numbers are not significant
Dr. S. M. Condren
Significant Figures
Examples:
Railroad Track Scale
• 70,000,000 g
• + 500,000 g
7.00 x 107 g (scientific notation)
7.00 E7 g (engineering notation)
3 significant figures
Dr. S. M. Condren
Significant Figures
Examples:
Regular Lab Balance
• 1,000 g + 0.1 g
1.0000 x 103 g
5 sig. fig.
• 400 g + 0.01 g
4.0000 x 102 g
5 sig. fig.
• 100 + 0.001 g
1.00000 x 102 g
6 sig.fig.
Dr. S. M. Condren
Rules for Mathematics
Multiplication and Division
For multiplication and division, the number of significant
figures used in the answer is the number in the value with
the fewest significant figures.
(2075)*(14)
---------------- = 2.0 x 102
(144)
4 sig. fig.; 2 sig.fig.; 3 sig. fig. => 2 sig. fig.
Dr. S. M. Condren
Rules for Mathematics
Addition and Subtraction
For addition and subtraction, the number of
significant figures used in the answer is
determined by the piece of data with the
fewest number decimal places.
4.371
302.5
-------306.8
Dr. S. M. Condren
Rules for Mathematics
Addition and Subtraction
For addition and subtraction, the number of
significant figures used in the answer is
determined by the piece of data with the
fewest number decimal places.
4.371
302.5
-------306.8
Dr. S. M. Condren
Rules for Mathematics
Addition and Subtraction
For addition and subtraction, the number of significant figures
used in the answer is determined by the piece of data with
the fewest number decimal places.
4.371 (I truncate extra data)
302.5
-------306.8
Dr. S. M. Condren
Exact Numbers
• conversion factors
• should never limit the number of significant
figures reported in answer
12 inches = 1 foot
Dr. S. M. Condren
Round Off
• Chemistry is an inexact science
• all physical measurements have some error
• thus, there is some inexactness in the last
digit of any number
• use what ever round-off procedure you
choose
• reasonably close answers accepted
Dr. S. M. Condren
Measurement and Units
length - meter
volume - liter
mass - gram
Dr. S. M. Condren
Important Metric Unit Prefixes
deci -- 1/10*
centi -- 1/100*
milli -- 1/1000*
nano -- 1/1,000,000,000
kilo -- 1000*
Dr. S. M. Condren
Liter
1 liter = 1 decimeter3
by definition
where
1 decimeter = 10 centimeters
therefore
1 liter = (10 centimeters)3
or
1 liter =1000 cm3 =1000 mL
Dr. S. M. Condren
Millimeter
1 millimeter = 1/1000 meter
1000 millimeter = 1 meter
1000 mm = 1 m
Dr. S. M. Condren
Nanometer
1 nanometer = 1/1,000,000,000 meter
1,000,000,000 nanometer = 1 meter
1,000,000,000 nm = 1 m
Dr. S. M. Condren
Liter
1 liter = 1 decimeter3
1 liter = 1000 milliliters
1 L = 1000 mL
1 mL = 0.001 L
Dr. S. M. Condren
Milligram
1 milligram = 1/1000 gram
1 mg = 0.001 g
Dr. S. M. Condren
Kilogram
1 kilogram = 1000 gram
1 g = 0.001 kg
1 mg = 0.000001 kg
1 kg = 1,000,000 mg
Dr. S. M. Condren
Conversion of Units
1 in = 2.54 cm
Dr. S. M. Condren
Temperature
Scales:
• Fahrenheit
• Rankin
– absolute scale using Fahrenheit size degree
• Celsius
• Kelvin
– absolute scale using Celsius size degree
Dr. S. M. Condren
Dr. S. M. Condren
Comparison of Temperature
Scales
Fahrenheit
Celcius
98.6
37.0
comfort temp. 68.0
20.0
bp water
212
100
mp
32
0
bp-mp
180
100
body temp.
Dr. S. M. Condren
Temperature Relationships
C = 100/180 * (F - 32)
F = (180/100)*C + 32
K = C + 273.15
- 40o F = - 40o C
Dr. S. M. Condren
If the temperature of the room goes from 20
degrees C to 40 degrees C, the ambient
thermal energy
– doubles
– is halved
– increases by less than 10%
Dr. S. M. Condren
Density
• Mass per unit of volume => d =m/V
• Mass equals volume times density => m = V*d
• Volume equals mass divided by density => V = m/d
Dr. S. M. Condren
Problem Solving by
Factor Label Method
• state question in mathematical form
• set equal to piece of data specific to the
problem
• use conversion factors to convert units of
data specific to problem to units sought in
answer
Dr. S. M. Condren
Example
How many kilometers are there in 0.200
miles?
Dr. S. M. Condren
Example
How many kilometers are there in 0.200
miles?
state question in mathematical form
#km
Dr. S. M. Condren
Example
How many kilometers are there in 0.200
miles?
set equal to piece of data specific to the
problem
#km = 0.200 miles
Dr. S. M. Condren
Example
How many kilometers are there in 0.200
miles?
use conversion factors to convert units of data
specific to problem to units sought in
answer
#km = (0.200 miles)
* (5280 ft/mile)
Dr. S. M. Condren
Example
How many kilometers are there in 0.200
miles?
cancel units
#km = (0.200 miles)
* (5280 ft/mile)
Dr. S. M. Condren
Example
How many kilometers are there in 0.200
miles?
add another conversion factor
#km = (0.200)*(5280 ft)
*(12 in/ft)
Dr. S. M. Condren
Example
How many kilometers are there in 0.200
miles?
cancel units
#km = (0.200)*(5280 ft)
*(12 in/ft)
Dr. S. M. Condren
Example
How many kilometers are there in 0.200
miles?
#km = (0.200)*(5280)*(12 in)
Dr. S. M. Condren
Example
How many kilometers are there in 0.200
miles?
add still another conversion factor
#km = (0.200)*(5280)*(12 in)
*(2.54 cm/in)
Dr. S. M. Condren
Example
How many kilometers are there in 0.200
miles?
cancel units
#km = (0.200)*(5280)*(12 in)
*(2.54 cm/in)
Dr. S. M. Condren
Example
How many kilometers are there in 0.200
miles?
#km = (0.200)*(5280)*(12)*(2.54 cm)
Dr. S. M. Condren
Example
How many kilometers are there in 0.200
miles?
add still another conversion factor
#km = (0.200)*(5280)*(12)*(2.54 cm)
*(1 m/100 cm)
Dr. S. M. Condren
Example
How many kilometers are there in 0.200
miles?
cancel units
#km = (0.200)*(5280)*(12)*(2.54 cm)
*(1 m/100 cm)
Dr. S. M. Condren
Example
How many kilometers are there in 0.200
miles?
#km = (0.200)*(5280)*(12)*(2.54)
*(1 m/100)
Dr. S. M. Condren
Example
How many kilometers are there in 0.200
miles?
add still another conversion factor
#km = (0.200)*(5280)*(12)*(2.54)
*(1 m/100)*(1 km/1000 m)
Dr. S. M. Condren
Example
How many kilometers are there in 0.200
miles?
cancel units
#km = (0.200)*(5280)*(12)*(2.54)
*(1 m/100)*(1 km/1000 m)
Dr. S. M. Condren
Example
How many kilometers are there in 0.200
miles?
#km = (0.200)*(5280)*(12)*(2.54)
*(1/100)*(1 km/1000)
Dr. S. M. Condren
Example
How many kilometers are there in 0.200 miles?
solve mathematics
#km = (0.200)*(5280)*(12)*(2.54)
*(1/100)*(1 km/1000)
= 0.322 km
3 sig. fig.
Dr. S. M. Condren
Example
How many kilometers are there in 0.200
miles?
solve mathematics
#km = (0.200)*(5280)*(12)*(2.54)
*(1/100)*(1 km/1000)
= 0.322 km
3 sig. fig.
exact numbers
Dr. S. M. Condren