Section 7.1, Example 1
Download
Report
Transcript Section 7.1, Example 1
example 1
Solve the system
Solution by Elimination
2 x 3 y z 1
x y 2 z 3
3x y z 9
Chapter 7.1
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
1. If necessary, interchange two equations or use multiplication to make the
coefficient of x in the first equation a 1.
2 x 3 y z 1
x y 2 z 3
3x y z 9
E1 E2
x y 2 z 3
2 x 3 y z 1
3x y z 9
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
2. Add a multiple of the first equation to each of the following equations so
that the coefficients of x in the second and third equations become 0.
x y 2 z 3
2 x 3 y z 1
3x y z 9
-2 R1 + R2 R2
2x 2 y 4z 6
2 x 3 y z 1
x y 2 z 3
y 3z 5
3x y z 9
y 3z 5
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
2. Add a multiple of the first equation to each of the following equations so
that the coefficients of x in the second and third equations become 0.
x y 2 z 3
2 x 3 y z 1
3x y z 9
-2 E1 + E2 E2
2x 2 y 4z 6
2 x 3 y z 1
x y 2 z 3
y 3z 5
3x y z 9
y 3z 5
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
2. Add a multiple of the first equation to each of the following equations so
that the coefficients of x in the second and third equations become 0.
x y 2 z 3
2 x 3 y z 1
3x y z 9
-2 E1 + E2 E2
2x 2 y 4z 6
2 x 3 y z 1
x y 2 z 3
y 3z 5
3x y z 9
y 3z 5
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
2. Add a multiple of the first equation to each of the following equations so
that the coefficients of x in the second and third equations become 0.
x y 2 z 3
y 3z 5
3x y z 9
-3 R1 + R3 R3
3 x 3 y 6 z 9
3x y z 9
x y 2 z 3
y 3z 5
4 y 7 z 18
4 y 7 z 18
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
2. Add a multiple of the first equation to each of the following equations so
that the coefficients of x in the second and third equations become 0.
x y 2 z 3
y 3z 5
3x y z 9
-3 E1 + E3 E3
3 x 3 y 6 z 9
3x y z 9
x y 2 z 3
y 3z 5
4 y 7 z 18
4 y 7 z 18
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
2. Add a multiple of the first equation to each of the following equations so
that the coefficients of x in the second and third equations become 0.
x y 2 z 3
y 3z 5
3x y z 9
-3 E1 + E3 E3
3 x 3 y 6 z 9
3x y z 9
x y 2 z 3
y 3z 5
4 y 7 z 18
4 y 7 z 18
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
2. Add a multiple of the first equation to each of the following equations so
that the coefficients of x in the second and third equations become 0.
x y 2 z 3
y 3z 5
3x y z 9
-3 E1 + E3 E3
3 x 3 y 6 z 9
3x y z 9
x y 2 z 3
y 3z 5
4 y 7 z 18
4 y 7 z 18
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
3. Multiply (or divide) both sides of the second equation by a number that
makes the coefficient of y in the second equation equal to 1.
x y 2 z 3
y 3z 5
4 y 7 z 18
-1 R2 R2
x y 2 z 3
y 3 z 5
4 y 7 z 18
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
3. Multiply (or divide) both sides of the second equation by a number that
makes the coefficient of y in the second equation equal to 1.
x y 2 z 3
y 3z 5
4 y 7 z 18
-1 E2 E2
x y 2 z 3
y 3 z 5
4 y 7 z 18
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
3. Multiply (or divide) both sides of the second equation by a number that
makes the coefficient of y in the second equation equal to 1.
x y 2 z 3
y 3z 5
4 y 7 z 18
-1 E2 E2
x y 2 z 3
y 3 z 5
4 y 7 z 18
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
4. Add a multiple of the (new) second equation to the (new) third equation
so that the coefficient of y in the newest third equation becomes 0.
x y 2 z 3
y 3 z 5
4 y 7 z 18
-4 R2 + R3 R3
4 y 12 z 20
4 y 7 z 18
x y 2 z 3
y 3 z 5
19 z 38
19 z 38
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
4. Add a multiple of the (new) second equation to the (new) third equation
so that the coefficient of y in the newest third equation becomes 0.
x y 2 z 3
y 3 z 5
4 y 7 z 18
-4 E2 + E3 E3
4 y 12 z 20
4 y 7 z 18
x y 2 z 3
y 3 z 5
19 z 38
19 z 38
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
4. Add a multiple of the (new) second equation to the (new) third equation
so that the coefficient of y in the newest third equation becomes 0.
x y 2 z 3
y 3 z 5
4 y 7 z 18
-4 E2 + E3 E3
4 y 12 z 20
4 y 7 z 18
x y 2 z 3
y 3 z 5
19 z 38
19 z 38
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
4. Add a multiple of the (new) second equation to the (new) third equation
so that the coefficient of y in the newest third equation becomes 0.
x y 2 z 3
y 3 z 5
4 y 7 z 18
-4 E2 + E3 E3
4 y 12 z 20
4 y 7 z 18
x y 2 z 3
y 3 z 5
19 z 38
19 z 38
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
5. Multiply (or divide) both sides of the third equation by a number that
makes the coefficient of z in the third equation equal to 1. This gives the
solution for z in the system of equations.
x y 2 z 3
y 3 z 5
19 z 38
191 E3 E3
x y 2 z 3
y 3 z 5
z 2
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
5. Multiply (or divide) both sides of the third equation by a number that
makes the coefficient of z in the third equation equal to 1. This gives the
solution for z in the system of equations.
x y 2 z 3
y 3 z 5
19 z 38
191 E3 E3
x y 2 z 3
y 3 z 5
z 2
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
6. Use the solution for z to solve for y in the second equation. Then
substitute values for y and z to solve for x in the first equation.
x y 2 z 3
y 3 z 5
z 2
y 3 2 5
x 1 2 2 3
y 6 5
x 5 3
y 1
x2
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
6. Use the solution for z to solve for y in the second equation. Then
substitute values for y and z to solve for x in the first equation.
x y 2 z 3
y 3 z 5
z 2
y 3 2 5
x 1 2 2 3
y 6 5
x 5 3
y 1
x2
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
6. Use the solution for z to solve for y in the second equation. Then
substitute values for y and z to solve for x in the first equation.
x y 2 z 3
y 3 z 5
z 2
y 3 2 5
x 1 2 2 3
y 6 5
x 5 3
y 1
x2
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
6. Use the solution for z to solve for y in the second equation. Then
substitute values for y and z to solve for x in the first equation.
x y 2 z 3
y 3 z 5
z 2
y 3 2 5
x 1 2 2 3
y 6 5
x 5 3
y 1
x2
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
6. Use the solution for z to solve for y in the second equation. Then
substitute values for y and z to solve for x in the first equation.
x y 2 z 3
y 3 z 5
z 2
y 3 2 5
x 1 2 2 3
y 6 5
x 5 3
y 1
x2
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
6. Use the solution for z to solve for y in the second equation. Then
substitute values for y and z to solve for x in the first equation.
x y 2 z 3
y 3 z 5
z 2
y 3 2 5
x 1 2 2 3
y 6 5
x 5 3
y 1
x2
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
6. Use the solution for z to solve for y in the second equation. Then
substitute values for y and z to solve for x in the first equation.
x y 2 z 3
y 3 z 5
z 2
y 3 2 5
x 1 2 2 3
y 6 5
x 5 3
y 1
x2
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
6. Use the solution for z to solve for y in the second equation. Then
substitute values for y and z to solve for x in the first equation.
x y 2 z 3
y 3 z 5
z 2
y 3 2 5
x 1 2 2 3
y 6 5
x 5 3
y 1
x2
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
6. Use the solution for z to solve for y in the second equation. Then
substitute values for y and z to solve for x in the first equation.
x y 2 z 3
y 3 z 5
z 2
y 3 2 5
x 1 2 2 3
y 6 5
x 5 3
y 1
x2
2009 PBLPathways
Solve the system
2 x 3 y z 1
x y 2 z 3
3x y z 9
Does the solution solve the system?
2 2 3 1 2 1
2 1 2 2 3
3 2 1 2 9
2009 PBLPathways