Triangular Form and Gaussian Elimination

Download Report

Transcript Triangular Form and Gaussian Elimination

Triangular Form and
Gaussian Elimination
Boldly on to Sec. 7.3a…
Hey Bain, what the heck are they???
Well, I’m glad you asked…
Triangular Form – of a system of equations has the leading
term of each equation with coefficient 1, the final equation has
only one variable, and each higher equation has one additional
variable
Example:
x  2y  z  7
y  2 z  7
z 3
Hey Bain, what the heck are they???
Well, I’m glad you asked…
Gaussian Elimination – the process of transforming a system
to triangular form
Steps that can be used in Gaussian Elimination (all of which
produce equivalent systems of linear equations):
1. Interchange any two equations of the system.
2. Multiply (or divide) one of the equations by any nonzero real
number.
3. Add a multiple of one equation to any other equation in the
system.
Back to our original example  Solve by substitution!
x  2y  z  7
y  2 z  7
z 3
x  2y  z  7
y  2  3  7  y  1
z 3
x  2  1  3  7  x  2
Solution:
y  1
x, y, z    2, 1,3

z 3
Another Example – Solve using Gaussian Elimination:
x  2y  z  7
3x  5 y  z  14
2x  2 y  z  3
3E1  E 2
Multiply the first equation by –3 and
add the result to the second equation,
replacing the second equation
x  2y  z  7
y  2 z  7
2x  2 y  z  3
Another Example – Solve using Gaussian Elimination:
x  2y  z  7
y  2 z  7
2x  2 y  z  3
2E1  E3
Multiply the first equation by –2 and
add the result to the third equation,
replacing the third equation.
x  2y  z  7
y  2 z  7
2 y  3 z  11
Another Example – Solve using Gaussian Elimination:
x  2 y  z  7 Multiply the second equation by –2
and add the result to the third equation,
y  2 z  7 replacing the third equation.
2 y  3 z  11
2E 2  E3
x  2y  z  7
y  2 z  7
z 3
 This is our first example!!!
Solve using Gaussian Elimination:
x  3y  z  4
 x  2 y  5z  3
5 x  13 y  13z  8
x  3y  z  4
 y  4z  7
02
E1  E 2
5E1  E3
2E 2  E3
Steps:
This last equation is never true…
 No Solution!!!
Solve using Gaussian Elimination:
2x  y  0
x  3 y  z  3
3y  z  8
E12
x  3 y  z  3
2x  y  0
3y  z  8
x  3 y  z  3 3 E  E x  3 y  z  3
3
2E1  E 2 7 y  2 z  6 7 2
7 y  2 z  6
3y  z  8
13 7  z  74 7
Solution: (x, y, z) = (5/13, 10/13, 74/13)
Solve using Gaussian Elimination:
0.5 x  y  z  w  1
0.5 x  y  z  w  1
 x  y  z  2w  3 E 3  E 2
y  2 w  1
xz 2
xz 2
yw0
yw0
 y  1.5 z  w  0
0.5 x  y  z  w  1
1
w  1
w  1  2 E 3  E1
E 4  E 2
xz 2
xz 2
yw0
yw0
Solution: (x, y, z, w) = (2, 1, 0, –1)