Vector Spaces, Linear Transformations and Matrices

Download Report

Transcript Vector Spaces, Linear Transformations and Matrices

Vector Spaces, Linear Transformations
and Matrices
Md. Rabiul Haque
Lecturer
Department of Mathematics
University of Rajshahi, Rajshahi.
Email: [email protected]
1
Vector Spaces, Linear Transformations and
Matrices
2
Vector Spaces, Linear Transformations and Matrices
A non-empty set ๐‘ญ with two
operations
addition and multiplication
Fields
(A) Axioms for addition
(A1)
(A2)
(A3)
(A4)
(A5)
If ๐‘ฅ โˆˆ ๐น and ๐‘ฆ โˆˆ ๐น, then their sum ๐‘ฅ + ัƒ is in ๐น.
Addition is commutative: ๐‘ฅ + ัƒ = ัƒ + ๐‘ฅ for all x, ัƒ โˆˆ ๐น.
Addition is associative: (๐‘ฅ + ๐‘ฆ) + ๐‘ง = ๐‘ฅ + (๐‘ฆ + ๐‘ง) for all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐น.
๐น contains an element 0 such that 0 + x = x for every ๐‘ฅ โˆˆ ๐น.
To every ๐‘ฅ โˆˆ ๐น corresponds an element โˆ’๐‘ฅ โˆˆ ๐น such that ๐‘ฅ + โˆ’๐‘ฅ = 0.
(M) Axioms for multiplication
(M1) If ๐‘ฅ โˆˆ ๐น and ๐‘ฅ โˆˆ ๐น, then their product ๐‘ฅ๐‘ฆ is in ๐น.
(M2) Multiplication is commutative: ๐‘ฅ๐‘ฆ = ๐‘ฆ๐‘ฅ for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐น .
(M3) Multiplication is associative: (๐‘ฅ๐‘ฆ)๐‘ง = ๐‘ฅ(๐‘ฆ๐‘ง) for all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐น .
(M4) ๐น contains an element 1 โ‰  0 such that 1๐‘ฅ = ๐‘ฅ for every ๐‘ฅ โˆˆ ๐น .
(M5) If ๐‘ฅ โˆˆ ๐น and ๐‘ฅ โ‰  0 then there exists an element
1
๐‘ฅ
(D) The distributive law
๐‘ฅ(๐‘ฆ + ๐‘ง) = ๐‘ฅ๐‘ฆ + ๐‘ฅ๐‘ง
1
๐‘ฅ
โˆˆ ๐น such that ๐‘ฅ. = 1.
holds for all
๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐น.
3
Vector Spaces, Linear Transformations and
Matrices
Example
โ„š = the set of rational numbers
โ„ = the set of real numbers
โ„‚ = the set
of complex numbers
1
are fields.
โ„• =the set of natural numbers
โ„ค =the set of integers
not fields ( why?? )
4
Vector
๐’—
๐‘ฉ
๐’–
๐’Œ๐’–
๐’–
๐ด
๐’–
๐’Œ๐’–
๐’€
(๐’‚ + ๐’„, ๐’ƒ + ๐’… )
๐’€
(๐’Œ๐š, ๐ค๐›)
๐’—
๐’
(๐’‚, ๐’ƒ)
๐’– (๐’‚, ๐’ƒ)
๐‘ฟ
๐’
๐‘ฟ
Marriage between Geometry and Algebra
5
๐’– = (๐‘ฅ1 , ๐‘ฅ2 , ๐‘ฅ3 , ๐‘ฅ4 )
๐’— = (๐‘ฆ1 , ๐‘ฆ2 , ๐‘ฆ3 , ๐‘ฆ4 )
๐’–+๐’—
= (๐‘ฅ1 , ๐‘ฅ2 , ๐‘ฅ3 , ๐‘ฅ4 ) + ๐‘ฆ1 , ๐‘ฆ2 , ๐‘ฆ3 , ๐‘ฆ4
= (๐‘ฅ1 + ๐‘ฆ1 , ๐‘ฅ2 + ๐‘ฆ2 , ๐‘ฅ3 + ๐‘ฆ3 , ๐‘ฅ4 + ๐‘ฆ4 )
๐‘˜๐’– = ๐‘˜ ๐‘ฅ1 , ๐‘ฅ2 , ๐‘ฅ3 , ๐‘ฅ4 = (๐‘˜๐‘ฅ1 , ๐‘˜๐‘ฅ2 , ๐‘˜๐‘ฅ3 , ๐‘˜๐‘ฅ4 )
6
Let
๐‘‰ = โ„๐‘› = { ๐‘Ž1 , ๐‘Ž2 , โ€ฆ โ€ฆ , ๐‘Ž๐‘› โˆถ ๐‘Ž๐‘– โˆˆ โ„ } and ๐น = โ„.
Define two operations vector addition and scalar multiplication as follows
๐’‚๐Ÿ , ๐’‚๐Ÿ , โ€ฆ โ€ฆ , ๐’‚๐’ + ๐’ƒ๐Ÿ , ๐’ƒ๐Ÿ , โ€ฆ โ€ฆ , ๐’ƒ๐’ = ๐’‚๐Ÿ + ๐’ƒ๐Ÿ , ๐’‚๐Ÿ + ๐’ƒ๐Ÿ , โ€ฆ โ€ฆ , ๐’‚๐’ + ๐’ƒ๐’
๐’Œ ๐’‚๐Ÿ , ๐’‚๐Ÿ , โ€ฆ โ€ฆ , ๐’‚๐’ = ๐’Œ๐’‚๐Ÿ , ๐’Œ๐’‚๐Ÿ , โ€ฆ โ€ฆ , ๐’Œ๐’‚๐’ where ๐’Œ โˆˆ ๐‘ญ
๐‘› is the n-tuple of zeros
The
zero
element
in
โ„
โˆ’ ๐’‚๐Ÿ , ๐’‚๐Ÿ , โ€ฆ , ๐’‚๐’ is the negative of ๐’‚๐Ÿ , ๐’‚๐Ÿ , โ€ฆ , ๐’‚๐’
โˆ’ ๐’‚๐Ÿ , ๐’‚๐Ÿ , โ€ฆ
โˆ’๐’‚, 0)
0 =, ๐’‚(0,0,0,
๐’ = โ€ฆ
๐Ÿ , โˆ’๐’‚๐Ÿ , โ€ฆ , โˆ’๐’‚๐’
Let ๐’– = ๐‘Ž1 , ๐‘Ž2 , โ€ฆ โ€ฆ , ๐‘Ž๐‘› , ๐’— = ๐‘1 , ๐‘2 , โ€ฆ โ€ฆ , ๐‘๐‘› and ๐’˜ = ๐‘1 , ๐‘2 , โ€ฆ โ€ฆ , ๐‘๐‘›
๐ด1 ๐’– + ๐’— + ๐’˜
= ๐‘Ž1 , ๐‘Ž2 , โ€ฆ โ€ฆ , ๐‘Ž๐‘› + ๐‘1 , ๐‘2 , โ€ฆ โ€ฆ , ๐‘๐‘› + ๐‘1 , ๐‘2 , โ€ฆ โ€ฆ , ๐‘๐‘›
= ๐‘Ž1 + ๐‘1 , ๐‘Ž2 + ๐‘2 , โ€ฆ โ€ฆ , ๐‘Ž๐‘› + ๐‘๐‘› + ๐‘1 , ๐‘2 , โ€ฆ โ€ฆ , ๐‘๐‘›
= ๐‘Ž1 + ๐‘1 + ๐‘1 , ๐‘Ž2 + ๐‘2 + ๐‘2 , โ€ฆ โ€ฆ , ๐‘Ž๐‘› + ๐‘๐‘› + ๐‘๐‘›
= ๐‘Ž1 + (๐‘1 + ๐‘1 ), ๐‘Ž2 + (๐‘2 +๐‘2 ), โ€ฆ โ€ฆ , ๐‘Ž๐‘› + (๐‘๐‘› +๐‘๐‘› )
= ๐‘Ž1 , ๐‘Ž2 , โ€ฆ โ€ฆ , ๐‘Ž๐‘› + ๐‘1 + ๐‘1 , ๐‘2 + ๐‘2 , โ€ฆ โ€ฆ , ๐‘๐‘› + ๐‘๐‘›
=๐’–+ ๐’—+๐’˜
๐‘จ๐Ÿ ๐’– + ๐’
= ๐‘Ž1 , ๐‘Ž2 , โ€ฆ โ€ฆ , ๐‘Ž๐‘› + (0, 0, โ€ฆ , 0) = ๐‘Ž1 + 0, ๐‘Ž2 + 0, โ€ฆ โ€ฆ , ๐‘Ž๐‘› + 0 = ๐‘Ž1 , ๐‘Ž2 , โ€ฆ โ€ฆ , ๐‘Ž๐‘›
7
=๐’–.
๐‘จ๐Ÿ‘ ๐’– + โˆ’๐’–
= ๐‘Ž1 , ๐‘Ž2 , โ€ฆ โ€ฆ , ๐‘Ž๐‘› + โˆ’๐‘Ž1 , โˆ’๐‘Ž2 , โ€ฆ , โˆ’๐‘Ž๐‘›
= ๐‘Ž1 + โˆ’๐‘Ž1 , ๐‘Ž2 + (โˆ’๐‘Ž2 ), โ€ฆ โ€ฆ , ๐‘Ž๐‘› + (โˆ’๐‘Ž๐‘› )
= (0, 0, โ€ฆ , 0)
=๐ŸŽ
๐‘จ๐Ÿ’ ๐’– + ๐’—
= ๐‘Ž1 , ๐‘Ž2 , โ€ฆ โ€ฆ , ๐‘Ž๐‘› + ๐‘1 , ๐‘2 , โ€ฆ โ€ฆ , ๐‘๐‘›
= ๐‘Ž1 + ๐‘1 , ๐‘Ž2 + ๐‘2 , โ€ฆ โ€ฆ , ๐‘Ž๐‘› + ๐‘๐‘›
= ๐‘1 + ๐‘Ž1 , ๐‘2 + ๐‘Ž2 , โ€ฆ โ€ฆ , ๐‘๐‘› + ๐‘Ž๐‘›
=๐’—+๐’–
๐‘ด๐Ÿ For any scalar ๐‘˜ โˆˆ ๐น
๐’Œ ๐’–+๐’—
= ๐‘˜ ๐‘Ž1 + ๐‘1 , ๐‘Ž2 + ๐‘2 , โ€ฆ โ€ฆ , ๐‘Ž๐‘› + ๐‘๐‘›
= ๐‘˜๐‘Ž1 + ๐‘˜๐‘1 , ๐‘˜๐‘Ž2 + ๐‘˜๐‘2 , โ€ฆ โ€ฆ , ๐‘˜๐‘Ž๐‘› + ๐‘˜๐‘๐‘›
= ๐‘˜๐‘Ž1 , ๐‘˜๐‘Ž2 , โ€ฆ โ€ฆ , ๐‘˜๐‘Ž๐‘› + ๐‘˜๐‘1 , ๐‘˜๐‘2 , โ€ฆ โ€ฆ , ๐‘˜๐‘๐‘›
= ๐‘˜ ๐‘Ž1 , ๐‘Ž2 , โ€ฆ โ€ฆ , ๐‘Ž๐‘› + ๐‘˜ ๐‘1 , ๐‘2 , โ€ฆ โ€ฆ , ๐‘๐‘›
= ๐’Œ๐’– + ๐’Œ๐’—.
8
๐‘ด๐Ÿ For any scalar ๐’Œ, ๐’ โˆˆ ๐‘ญ
๐’Œ+๐’ ๐’–
= ๐‘˜ + ๐‘™ ๐‘Ž1 , ๐‘Ž2 , โ€ฆ โ€ฆ , ๐‘Ž๐‘›
= (๐‘˜ + ๐‘™)๐‘Ž1 , (๐‘˜ + ๐‘™)๐‘Ž2 , โ€ฆ โ€ฆ , (๐‘˜ + ๐‘™)๐‘Ž๐‘›
= ๐‘˜๐‘Ž1 + ๐‘™๐‘Ž1 , ๐‘˜๐‘Ž2 + ๐‘™๐‘Ž2 , โ€ฆ โ€ฆ , ๐‘˜๐‘Ž๐‘› + ๐‘™๐‘Ž๐‘›
= ๐‘˜๐‘Ž1 , ๐‘˜๐‘Ž2 , โ€ฆ โ€ฆ , ๐‘˜๐‘Ž๐‘› + ๐‘™๐‘Ž1 , ๐‘™๐‘Ž2 , โ€ฆ โ€ฆ , ๐‘™๐‘Ž๐‘›
= ๐‘˜ ๐‘Ž1 , ๐‘Ž2 , โ€ฆ , ๐‘Ž๐‘› + ๐‘™ ๐‘Ž1 , ๐‘Ž2 , โ€ฆ โ€ฆ , ๐‘Ž๐‘› = ๐’Œ๐’– + ๐’๐’–
๐‘ด๐Ÿ‘ For any scalar ๐’Œ, ๐’ โˆˆ ๐‘ญ
๐’Œ๐’ ๐’–
= ๐‘˜๐‘™ ๐‘Ž1 , ๐‘Ž2 , โ€ฆ โ€ฆ , ๐‘Ž๐‘›
= ๐‘˜๐‘™๐‘Ž1 , ๐‘˜๐‘™๐‘Ž2 , โ€ฆ โ€ฆ , ๐‘˜๐‘™๐‘Ž๐‘› = ๐‘˜(๐‘™๐‘Ž1 ), ๐‘˜(๐‘™๐‘Ž2 ), โ€ฆ โ€ฆ , ๐‘˜(๐‘™๐‘Ž๐‘› )
= ๐‘˜ ๐‘™๐‘Ž1 , ๐‘™๐‘Ž2 , โ€ฆ โ€ฆ , ๐‘™๐‘Ž๐‘› = ๐‘˜ ๐‘™ ๐‘Ž1 , ๐‘Ž2 , โ€ฆ โ€ฆ , ๐‘Ž๐‘›
= ๐’Œ ๐’๐’–
๐‘ด๐Ÿ’ For unit scalar ๐Ÿ โˆˆ ๐‘ญ
๐Ÿ๐’–
= ๐Ÿ ๐’‚๐Ÿ , ๐’‚๐Ÿ , โ€ฆ โ€ฆ , ๐’‚๐’ = ๐Ÿ๐’‚๐Ÿ , ๐Ÿ๐’‚๐Ÿ , โ€ฆ โ€ฆ , ๐Ÿ๐’‚๐’ = ๐’‚๐Ÿ , ๐’‚๐Ÿ , โ€ฆ โ€ฆ , ๐’‚๐’
=๐’–
9
๐‘ญ(๐‘ฟ) =
๐’‡๐œถ , ๐’‡๐œท , ๐’‡๐œธ
๐’‡
,๐’‡ ๐œถ
,โ€ฆโ€ฆโ€ฆ
๐œน
10
๐‘ญ ๐‘ฟ = ๐’‡: ๐‘ฟ โ†’ ๐‘ฒ = โ„
๐‘ญ(๐‘ฟ) denote the set of all functions of ๐‘‹ into ๐พ.
Can define
Addition and Scalar
Scalar multiplication
Multiplication
Addition
(๐’‡ + ๐’ˆ)(๐’™) = ๐’‡(๐’™) + ๐’ˆ(๐’™) โˆ€๐’™
inโˆˆ ๐‘ฟ๐น
๐‘‹
?
(๐’Œ๐’‡)(๐’™) = ๐’Œ๐’‡(๐’™) โˆ€๐’™ โˆˆ ๐‘ฟ
Zero and negative element in
๐น ๐‘‹ ?
Zero element in ๐น(๐‘‹)
Zero function 0
๐ŸŽ ๐’™ = 0 โˆ€๐’™ โˆˆ ๐‘ฟ
โˆ’๐’‡ ๐’Š๐’” ๐’•๐’‰๐’† negative of the function ๐’‡
โˆ’๐’‡ ๐’™ = โˆ’๐’‡ ๐’™ โˆ€ ๐’™ โˆˆ ๐‘ฟ
11
Let ๐’‡, ๐’ˆ, ๐’‰ โˆˆ ๐‘ญ(๐‘ฟ)
๐‘จ๐Ÿ
๐’‡+๐’ˆ +๐’‰ ๐‘ฅ = ๐‘“+๐‘” ๐‘ฅ +โ„Ž ๐‘ฅ = ๐‘“ ๐‘ฅ +๐‘” ๐‘ฅ
=๐‘“ ๐‘ฅ + ๐‘” ๐‘ฅ +โ„Ž ๐‘ฅ = ๐’‡+ ๐’ˆ+๐’‰ ๐’™
โˆ€๐‘ฅ โˆˆ ๐‘‹
+โ„Ž ๐‘ฅ
๐’‡+๐’ˆ +๐’‰=๐’‡+ ๐’ˆ+๐’‰
๐‘จ๐Ÿ
๐’‡+๐ŸŽ ๐’™ =๐’‡ ๐’™ +๐ŸŽ ๐’™ =๐’‡ ๐’™ +๐ŸŽ= ๐’‡
โˆ€๐‘ฅ โˆˆ ๐‘‹
๐’‡+๐ŸŽ=๐’‡
๐‘จ๐Ÿ‘
๐’‡ + โˆ’๐’‡
๐’™ = ๐’‡ ๐’™ + โˆ’๐’‡ ๐’™ = ๐’‡ ๐’™ โˆ’ ๐’‡ ๐’™ = ๐ŸŽ = ๐ŸŽ ๐’™ โˆ€๐‘ฅ โˆˆ ๐‘‹
๐’‡ + โˆ’๐’‡ = ๐ŸŽ
๐‘จ๐Ÿ’
๐’‡ + ๐’ˆ ๐’™ = ๐’‡ ๐’™ + ๐’ˆ ๐’™ = ๐’ˆ ๐’™ + ๐’‡ ๐’™ = ๐’ˆ + ๐’‡ ๐’™ โˆ€๐‘ฅ โˆˆ ๐‘‹
๐’‡+๐’ˆ=๐’ˆ+๐’‡
12
๐‘ด๐Ÿ For any scalar ๐‘˜ โˆˆ ๐พ
๐‘˜ ๐‘“+๐‘” ๐‘ฅ =๐‘˜ ๐‘“+๐‘” ๐‘ฅ =๐‘˜ ๐‘“ ๐‘ฅ +๐‘” ๐‘ฅ
= ๐‘˜๐‘“ ๐‘ฅ + ๐‘˜๐‘” ๐‘ฅ = ๐‘˜๐‘“ + ๐‘˜๐‘” ๐‘ฅ
= ๐‘˜๐‘“ ๐‘ฅ + ๐‘˜๐‘” ๐‘ฅ
๐’Œ ๐’‡ + ๐’ˆ = ๐’Œ๐’‡ + ๐’Œ๐’ˆ
๐‘ด๐Ÿ For any scalar ๐’Œ, ๐’ โˆˆ ๐‘ฒ
๐’Œ + ๐’ ๐’‡ ๐’™ = ๐’Œ + ๐’ ๐’‡ ๐’™ = ๐’Œ๐’‡ ๐’™ + ๐’๐’‡ ๐’™ = ๐’Œ๐’‡ ๐’™ + ๐’๐’‡ ๐’™
๐’Œ + ๐’ ๐’‡ = ๐’Œ๐’‡ + ๐’๐’‡
๐‘ด๐Ÿ‘ For any scalar ๐’Œ, ๐’ โˆˆ ๐‘ฒ ๐’Œ๐’๐’‡ ๐’™ = ๐’Œ๐’๐’‡ ๐’™ = ๐’Œ ๐’๐’‡ ๐’™
= ๐’Œ ๐’๐’‡
๐’™
(๐’Œ๐’)๐’‡ = ๐’Œ(๐’๐’‡)
๐‘ด๐Ÿ’ For unit scalar ๐Ÿ โˆˆ ๐‘ฒ
๐Ÿ๐’‡ ๐’™ = ๐Ÿ๐’‡ ๐’™ = ๐’‡ ๐’™
๐Ÿ๐’‡ = ๐’‡
13
Let โ„ be field and let
๐‘ท ๐’• = { ๐‘ ๐‘ก = ๐‘Ž0 + ๐‘Ž1 ๐‘ก 1 + ๐‘Ž2 ๐‘ก 2 + โ‹ฏ + ๐‘Ž๐‘  ๐‘ก ๐‘  ,
๐‘  = 1,2,3, โ€ฆ ๐‘Ž๐‘›๐‘‘ ๐‘Ž๐‘– โˆˆ โ„ }
๐‘ท ๐’• denote the set of all real polynomials ๐’‘(๐’•) . ๐’‘ ๐’• =
๐Ÿ‘ + ๐Ÿ–๐’•๐Ÿ โˆ’ ๐Ÿ•๐’•๐Ÿ + โ‹ฏ + ๐Ÿ’๐Ÿ“๐’•๐Ÿ‘๐Ÿ + โ‹ฏ
Let โ„ be field and ๐ฅ๐ž๐ญ
๐‘ท๐’ ๐’• = { ๐’‘ ๐’• = ๐’‚๐ŸŽ + ๐’‚๐Ÿ ๐’•๐Ÿ + ๐’‚๐Ÿ ๐’•๐Ÿ + โ‹ฏ + ๐’‚๐’” ๐’•๐’” ,
๐‘  โ‰ค ๐‘› ๐‘Ž๐‘›๐‘‘ ๐‘Ž๐‘– โˆˆ โ„ }
๐‘ท๐’ ๐’• denote the set of all polynomials ๐’‘(๐’•) over the
field โ„ ,
where the degree of ๐’‘(๐’•) is less than or equal to ๐’ .
14
Usual addition and scalar multiplication, we can see that
๐‘ƒ ๐‘ก and ๐‘ƒ๐‘› ๐‘ก
satisfies
๐‘จ๐Ÿ ๐’‘ + ๐’’ + ๐’“ = ๐’‘ + ๐’’ + ๐’“
๐‘จ๐Ÿ ๐’‘ + ๐ŸŽ = ๐’‘
๐‘จ๐Ÿ‘
๐‘จ๐Ÿ’
๐‘ด๐Ÿ
๐‘ด๐Ÿ
๐‘ด๐Ÿ‘
๐‘ด๐Ÿ’
๐’‘ + โˆ’๐’‘ = ๐ŸŽ
๐’‘+๐’’=๐’’+๐’‘
๐’Œ ๐’‘ + ๐’’ = ๐’Œ๐’‘ + ๐’Œ๐’’
๐’Œ + ๐’ ๐’‘ = ๐’Œ๐’‘ + ๐’๐’‘
๐’Œ๐’ ๐’‘ = ๐’Œ ๐’๐’‘
๐Ÿ๐’‘ = ๐’‘
15
๐‘›
โ„
โ„
2
โ„
๐‘€๐‘š,๐‘›
3
Vector
Spaces over
the field ๐‘ญ
???????
๐‘ญ(๐‘ฟ)
๐‘ท๐’ (๐’•)
๐‘ƒ(๐‘ก)
16
Vector Spaces
Abstract Concept
Let ๐‘ฝ Vector
be a nonempty
set involves
with two operations:
Space
four things
(i) Vector Addition
: This assigns to any
๐’–, ๐’—(๐‘ฝ
โˆˆ ๐‘ฝ, a๐‘ญ)
sumand
๐’– + ๐’— in ๐‘‰.
Two non-empty
sets
two
algebraic
operations
( addition,
(ii)
Scalar
Multiplication:
This assigns
to any ๐’– โˆˆscalar
๐‘ฝ, ๐’Œ โˆˆ multiplication)
๐‘ฒ a product ๐’Œ๐’– โˆˆ ๐‘‰.
Then ๐‘ฝ is called a vector space over the field ๐พ
๐‘จ๐Ÿ ๐’– + ๐’— + ๐’˜ = ๐’– + ๐’— + ๐’˜
Abelian Group under
๐‘จ๐Ÿ ๐’– + ๐ŸŽ = ๐ŸŽ + ๐’– = ๐’–
Addition
๐‘จ๐Ÿ‘ ๐’– + โˆ’๐’– = โˆ’๐’– + ๐’– = ๐ŸŽ.
๐‘จ๐Ÿ’ ๐’– + ๐’— = ๐’— + ๐’–
+: ๐‘‰×๐‘‰ โ†’๐‘‰
โ‹… โˆถ๐น×๐‘‰ โ†’๐‘‰
๐‘ด๐Ÿ ๐’„ ๐’– + ๐’— = ๐’„๐’— + ๐’„๐’˜
๐‘ด๐Ÿ ๐’„ + ๐’Œ ๐’– = ๐’„๐’– + ๐’Œ๐’–
๐‘ด๐Ÿ‘ ๐’„๐’Œ ๐’– = ๐’„ ๐’Œ๐’–
17
3
โ„
๐‘›
โ„
๐‘€๐‘š,๐‘›
2
โ„
โ„
Vector
Spaces over
the field โ„
Integrable
functions on the
same interval
๐‘ญ(๐‘ฟ)
๐‘ท๐’ (๐’•)
๐‘ƒ(๐‘ก)
18
๐Ÿ
(๐ŸŽ, ๐ŸŽ)
vector space ?
๐’€
โ„
(๐Ÿ, ๐Ÿ)
vector space ?
๐Ÿ, ๐Ÿ , (๐Ÿ’, ๐Ÿ)
vector space ?
๐’™, ๐’š โˆถ ๐’š = ๐’Ž๐’™
vector space ?
๐Ÿ
โ„
โ—
โ—
โ—๐’
๐‘ฟ
Subset
Vector space
Not Vector space
Subspace
19
Subspaces
V
W
is vector space over a field ๐‘ฒ
๐‘พ โŠ‚ ๐‘ฝ , ๐‘พ is subspace of ๐‘ฝ
Let ๐‘ฝ be a vector space over a field ๐‘ฒ and let ๐‘พ be a subset of V.
Then ๐‘พ is a subspace of ๐‘ฝ if ๐‘พ is itself a vector space over ๐‘ฒ with
respect to the operations of vector addition and scalar
multiplication on ๐‘ฝ.
if
๐ŸŽโˆˆ๐‘พ
and ๐’‚๐’– + ๐’ƒ๐’— โˆˆ ๐‘พ
20
Subspaces of โ„๐Ÿ
๐’€
โˆŽ {(๐ŸŽ, ๐ŸŽ)}
โˆŽ Any line through (๐ŸŽ, ๐ŸŽ)
โˆŽ The whole Space (โ„๐Ÿ )
โฆ
๐’
โฆ
โฆ
๐‘ฟ
21
Subspaces of โ„๐Ÿ‘
๐’€
โˆŽ {(๐ŸŽ, ๐ŸŽ, ๐ŸŽ)}
โˆŽ Any line through (๐ŸŽ, ๐ŸŽ, ๐ŸŽ)
โˆŽ Any Plane through (๐ŸŽ, ๐ŸŽ, ๐ŸŽ)
โˆŽ The whole Space
(โ„๐Ÿ‘ )
๐’
โฆ
๐‘ฟ
๐’
22
๐‘บ๐’–๐’ƒ๐’”๐’‘๐’‚๐’„๐’†๐’” ๐’๐’‡ ๐‘ญ(๐‘ฟ)
All real valued function
on
๐‘ฟ
All bounded/odd/even/
analytic functions on ๐‘ฟ
23
๐‘บ๐’–๐’ƒ๐’”๐’‘๐’‚๐’„๐’†๐’” ๐’๐’‡ ๐‘ท(๐’•)
The set of all real
polynomials
24
๐‘บ๐’–๐’ƒ๐’”๐’‘๐’‚๐’„๐’†๐’” ๐’๐’‡ ๐‘ด๐’Ž,๐’
All matrices of order
๐’Ž×๐’
25
๐‘ˆโˆฉ ๐‘‰
V
๐‘ˆ
๐‘ ๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’
subspace
subspace
The intersection of any number of subspaces
of a vector space ๐‘ฝ is a subspace of ๐‘ฝ.
26
Linear combinations
๐’—๐Ÿ , ๐’— ๐Ÿ , โ€ฆ , ๐’—๐’Ž โˆˆ ๐‘ฝ
๐’— = ๐’‚ ๐Ÿ ๐’—๐Ÿ + ๐’‚ ๐Ÿ ๐’—๐Ÿ + โ‹ฏ + ๐’‚ ๐’Ž ๐’—๐’Ž
๐’˜๐’‰๐’†๐’“๐’† ๐’‚๐Ÿ , ๐’‚๐Ÿ , โ€ฆ , ๐’‚๐’Ž โˆˆ ๐‘ฒ
2
(๐Ÿ, ๐ŸŽ), (๐ŸŽ, ๐Ÿ) โˆˆ โ„
2 1, 0 + 3 0, 1 = (2, 3)
โˆ’4 1, 0 + 2 0, 1 = โˆ’4, 2
0 1, 0 + 0 0, 1 = (0, 0)
๐Ÿ, ๐Ÿ, ๐Ÿ , ๐Ÿ‘, ๐ŸŽ, ๐Ÿ , (๐Ÿ, ๐Ÿ, ๐Ÿ’) โˆˆ โ„3
2 1, 1, 2 + 3 3,0, 1 + 4 2, 2, 4 = 17, 10,23
โˆ’3 1, 1, 2 + 3 3,0, 1 + 5(2, 2, 4) = (10, 7,17)
0 1, 1, 2 + 0 3,0, 1 + 0(2, 2, 4) = (0, 0,0)
27
Spanning sets
๐’—๐Ÿ , ๐’—๐Ÿ , โ€ฆ , ๐’—๐’Ž โˆˆ ๐‘ฝ span ๐‘ฝ if every ๐’— in ๐‘ฝ is
๐’— = ๐’‚ ๐Ÿ ๐’—๐Ÿ + ๐’‚๐Ÿ ๐’—๐Ÿ + โ‹ฏ + ๐’‚๐’Ž ๐’—๐’Ž
Are ๐’†๐Ÿ = ๐Ÿ, ๐ŸŽ , ๐’†๐Ÿ = ๐ŸŽ, ๐Ÿ span โ„๐Ÿ ?
๐’‚, ๐’ƒ = ๐’™๐’†๐Ÿ + ๐’š๐’†๐Ÿ
= ๐’™ ๐Ÿ, ๐ŸŽ + ๐’š ๐ŸŽ, ๐Ÿ
= ๐’™, ๐ŸŽ + ๐ŸŽ, ๐’š = ๐’™, ๐’š
โ‡’๐’™=๐’‚,
๐’‚, ๐’ƒ = ๐’‚๐’†๐Ÿ + ๐’ƒ๐’†๐Ÿ
๐’š=๐’ƒ
๐Ÿ
๐’†๐Ÿ , ๐’†๐Ÿ span โ„
๐Ÿ“, โˆ’๐Ÿ” = ๐Ÿ“๐’†๐Ÿ โˆ’ ๐Ÿ”๐’†๐Ÿ
28
Are ๐’˜๐Ÿ = ๐Ÿ, ๐Ÿ , ๐’˜๐Ÿ = ๐Ÿ‘, ๐Ÿ span โ„๐Ÿ ?
๐’‚, ๐’ƒ = ๐’™๐’˜๐Ÿ + ๐’š๐’˜๐Ÿ
= ๐’™ ๐Ÿ, ๐Ÿ + ๐’š ๐Ÿ‘, ๐Ÿ
= ๐Ÿ๐’™, ๐’™ + ๐Ÿ‘๐’š, ๐Ÿ๐’š = ๐Ÿ๐’™ + ๐Ÿ‘๐’š, ๐’™ + ๐Ÿ๐’š
โ‡’ ๐Ÿ๐’™ + ๐Ÿ‘๐’š = ๐’‚,
๐’™ + ๐Ÿ๐’š = ๐’ƒ
โ‡’ ๐’™ = ๐Ÿ๐’‚ โˆ’ ๐Ÿ‘๐’ƒ ,
๐’š = ๐Ÿ๐’ƒ โˆ’ ๐’‚,
๐’‚, ๐’ƒ = (๐Ÿ๐’‚ โˆ’ ๐Ÿ‘๐’ƒ)๐’˜๐Ÿ + (๐Ÿ๐’ƒ โˆ’๐’‚)๐’˜๐Ÿ
๐’˜๐Ÿ , ๐’˜๐Ÿ span โ„๐Ÿ
๐Ÿ, โˆ’๐Ÿ = ๐Ÿ•๐’˜๐Ÿ โˆ’ ๐Ÿ“๐’˜๐Ÿ
29
๐‘จ๐’“๐’† ๐’†๐Ÿ = ๐Ÿ, ๐ŸŽ ๐’”๐’‘๐’‚๐’ โ„๐Ÿ ?
๐’‚, ๐’ƒ = ๐’™๐’†๐Ÿ = ๐’™ ๐Ÿ, ๐ŸŽ = ๐’™, ๐ŸŽ
โ‡’ ๐’™ = ๐’‚,
๐’ƒ=๐ŸŽ
๐’†๐Ÿ do not span โ„๐Ÿ
Are ๐’–๐Ÿ = ๐Ÿ, ๐ŸŽ , ๐’–๐Ÿ = ๐ŸŽ, ๐Ÿ , ๐’–๐Ÿ‘ = ๐Ÿ, ๐Ÿ s๐ฉ๐š๐ง โ„๐Ÿ ?
๐’‚, ๐’ƒ = ๐’‚๐’–๐Ÿ + ๐’ƒ๐’–๐Ÿ + ๐ŸŽ๐’–๐Ÿ‘
๐’–๐Ÿ , ๐’–๐Ÿ , ๐’–๐Ÿ‘ span โ„๐Ÿ .
Are ๐’–๐Ÿ = ๐Ÿ, ๐ŸŽ , ๐’–๐Ÿ = ๐ŸŽ, ๐Ÿ , ๐’–๐Ÿ‘ = ๐Ÿ, ๐Ÿ , ๐’–๐Ÿ’ = (๐Ÿ, ๐Ÿ) s๐ฉ๐š๐ง โ„๐Ÿ ?
๐’‚, ๐’ƒ = ๐’‚๐’–๐Ÿ + ๐’ƒ๐’–๐Ÿ โˆ’ ๐Ÿ๐’–๐Ÿ‘ + ๐’–๐Ÿ’
๐’–๐Ÿ , ๐’–๐Ÿ , ๐’–๐Ÿ‘ , ๐’–๐Ÿ’ span โ„๐Ÿ .
S๐’–๐’‘๐’‘๐’๐’”๐’† ๐’—๐Ÿ , ๐’—๐Ÿ , โ€ฆ , ๐’—๐’Ž span ๐‘ฝ,
the set ๐’˜, ๐’—๐Ÿ , ๐’—๐Ÿ , โ€ฆ , ๐’—๐’Ž also span ๐‘ฝ .
๐’— = ๐’‚๐Ÿ ๐’—๐Ÿ + ๐’‚๐Ÿ ๐’—๐Ÿ + โ‹ฏ + ๐’‚๐’Ž ๐’—๐’Ž
๐’— = ๐’‚๐Ÿ ๐’—๐Ÿ + ๐’‚๐Ÿ ๐’—๐Ÿ + โ‹ฏ + ๐’‚๐’Ž ๐’—๐’Ž + ๐ŸŽ๐’˜
30
Linear Spans
๐’–๐Ÿ , ๐’–๐Ÿ , โ€ฆ , ๐’–๐’Ž โˆˆ ๐‘ฝ
๐’”๐’‘๐’‚๐’ ๐’–๐’Š =
๐’Ž
๐’Š=๐Ÿ
๐’‚๐’Š ๐’–๐’Š | ๐’‚๐’Š โˆˆ ๐‘ฒ
๐’”๐’‘๐’‚๐’(๐’–) consists of all
scalar multiples ๐‘œ๐‘“ ๐’–.
๐’–
๐’
๐’€
๐’–
๐’—
Geometrically, ๐’”๐’‘๐’‚๐’(๐’–) is the
line through the origin ๐‘ถ and the
endpoint of ๐’–.
Then ๐’”๐’‘๐’‚๐’ ๐’–, ๐’— is the plane
through the origin O and the
endpoints of ๐‘ข ๐‘Ž๐‘›๐‘‘ ๐‘ฃ .
๐ŸŽ
๐‘ฟ
๐’
31
๐‘บ = โˆ… ๐’”๐’‘๐’‚๐’(๐‘บ) = {๐ŸŽ}.
๐‘บ is a spanning set of ๐’”๐’‘๐’‚๐’(๐‘บ).
๐’†๐Ÿ = ๐Ÿ, ๐ŸŽ, ๐ŸŽ ,
๐’†๐Ÿ = ๐ŸŽ, ๐Ÿ, ๐ŸŽ , ๐’†๐Ÿ‘ = ๐ŸŽ, ๐ŸŽ, ๐Ÿ
๐’‚, ๐’ƒ, ๐’„ = ๐’‚๐’†๐Ÿ + ๐’ƒ๐’†๐Ÿ + ๐’„๐’†๐Ÿ‘
s๐’‘๐’‚๐’(๐’†๐Ÿ , ๐’†๐Ÿ , ๐’†๐Ÿ‘ ) = โ„๐Ÿ‘ .
๐‘บ๐’‘๐’‚๐’(๐’–๐’Š ) is a subspace of ๐‘ฝ.
๐ŸŽ โˆˆ ๐’”๐’‘๐’‚๐’ ๐’–๐’Š , since ๐ŸŽ = ๐ŸŽ๐’–๐Ÿ + ๐ŸŽ๐’–๐Ÿ + โ€ฆ + ๐ŸŽ๐’–๐’Ž
Let ๐’– , ๐’— โˆˆ ๐’”๐’‘๐’‚๐’ ๐’–๐’Š
โŸน ๐’– = ๐’๐’Š=๐Ÿ ๐’‚๐’Š ๐’–๐’Š and ๐’— = ๐’๐’Š=๐Ÿ ๐’ƒ๐’Š ๐’–๐’Š
โ‡’ ๐’‚๐’– + ๐’ƒ๐’— = ๐’‚
=
๐’
๐’Š=๐Ÿ
๐’
๐’Š=๐Ÿ
๐’–๐’Š + ๐’ƒ
๐’
๐’Š=๐Ÿ
๐’ƒ๐’Š ๐’–๐’Š
๐’‚๐’‚๐’Š + ๐’ƒ๐’‚๐’Š ๐’–๐’Š
โ‡’ ๐’‚๐’– + ๐’ƒ๐’— โˆˆ ๐‘บ๐’‘๐’‚๐’(๐’– )
32
Theorem
Let ๐‘บ be a subset of a vector space ๐‘ฝ.
(i) Then ๐’”๐’‘๐’‚๐’(๐‘บ) is a subspace of ๐‘‰ that contains ๐‘†.
(ii) If ๐‘พ is a subspace of ๐‘ฝ containing ๐‘บ, then ๐’”๐’‘๐’‚๐’(๐‘บ) โŠ‚ ๐‘พ.
๐’”๐’‘๐’‚๐’(๐‘บ) is the "smallest" subspace of ๐‘ฝ containing ๐‘บ.
๐‘†
๐‘ฝ
๐‘บ๐’‘๐’‚๐’(๐’”)
33
Linear Dependence and Independence
{ ๐Ÿ, ๐Ÿ , (๐Ÿ‘, ๐Ÿ)}
โ†“
โ„
{ ๐Ÿ, ๐ŸŽ }
{ ๐Ÿ, ๐ŸŽ , ๐ŸŽ, ๐Ÿ , (๐Ÿ, ๐Ÿ)}
โ†“
{ ๐Ÿ, ๐ŸŽ , (๐ŸŽ, ๐Ÿ)}
โ†“๐Ÿ
{ ๐Ÿ, ๐ŸŽ , ๐ŸŽ, ๐Ÿ , ๐Ÿ, ๐Ÿ , (๐Ÿ, ๐Ÿ)}
๐’–๐Ÿ , ๐’–๐Ÿ , โ€ฆ , ๐’–๐’Ž โˆˆ ๐‘ฝ are linearly dependent
if โˆƒ scalars ๐’‚๐Ÿ , ๐’‚๐Ÿ , โ€ฆ , ๐’‚๐’Ž in ๐‘ฒ, not all of them ๐ŸŽ, such that
๐’‚๐Ÿ ๐’–๐Ÿ + ๐’‚๐Ÿ ๐’–๐Ÿ + โ‹ฏ + ๐’‚๐’Ž ๐’–๐’Ž = ๐ŸŽ.
Otherwise, we say that the vectors
๐’–๐Ÿ , ๐’–๐Ÿ , โ€ฆ , ๐’–๐’Ž are linearly independent.
34
Linear Dependence and Independence
๐‘† = ๐’—๐Ÿ , ๐’—๐Ÿ , โ€ฆ , ๐’—๐’Ž one vector is 0 , ๐‘ ๐‘Ž๐‘ฆ ๐’—๐Ÿ =0.
๐‘บ linearly independent or not ?
๐Ÿ๐’—๐Ÿ + ๐ŸŽ๐’—๐Ÿ + โ‹ฏ + ๐ŸŽ๐’—๐’Ž
๐‘บ dependent.
= ๐Ÿ. ๐ŸŽ + ๐ŸŽ + โ‹ฏ + ๐ŸŽ = ๐ŸŽ
๐’—, ๐’Œ๐’— two vectors
โˆ’๐’Œ๐’— + ๐Ÿ ๐’Œ๐’— = ๐ŸŽ
๐’—๐Ÿ , ๐’—๐Ÿ , โ€ฆ , ๐’—๐’Ž
one vector is multiple of others , ๐‘ ๐‘Ž๐‘ฆ ๐’—๐Ÿ = ๐’Œ๐’—๐Ÿ‘ .
๐’—๐Ÿ , ๐’—๐Ÿ , โ€ฆ , ๐’—๐’Ž linearly independent or not ?
โˆ’๐’Œ๐’—๐Ÿ + ๐ŸŽ๐’—๐Ÿ + ๐’Œ๐’—๐Ÿ‘ + โ‹ฏ + ๐ŸŽ๐’—๐’Ž
= ๐Ÿ. ๐ŸŽ + ๐ŸŽ + โ‹ฏ + ๐ŸŽ
=๐ŸŽ
๐’—๐Ÿ , ๐’—๐Ÿ , โ€ฆ , ๐’—๐’Ž linearly dependent.
35
{ ๐Ÿ, ๐ŸŽ , ๐ŸŽ, ๐Ÿ } ๐’๐’Š๐’๐’†๐’‚๐’“๐’๐’š
๐’Š๐’๐’…๐’†๐’‘๐’†๐’๐’…๐’†๐’๐’• ๐’Š๐’ โ„๐Ÿ ?
{ ๐Ÿ, ๐Ÿ , ๐Ÿ‘, ๐Ÿ } ๐’๐’Š๐’๐’†๐’‚๐’“๐’๐’š
๐’Š๐’๐’…๐’†๐’‘๐’†๐’๐’…๐’†๐’๐’• ๐’Š๐’ โ„๐Ÿ ?
๐’™ ๐Ÿ, ๐ŸŽ + ๐’š ๐ŸŽ, ๐Ÿ = ๐ŸŽ, ๐ŸŽ
๐’™ ๐Ÿ, ๐Ÿ + ๐’š ๐Ÿ‘, ๐Ÿ = ๐ŸŽ, ๐ŸŽ
โ‡’ ๐‘ฅ, 0 + 0, ๐‘ฆ = 0, 0
โ‡’ 2๐‘ฅ, ๐‘ฅ + 3๐‘ฆ, 2๐‘ฆ = 0, 0
โ‡’ ๐‘ฅ, ๐‘ฆ = 0, 0
โ‡’ 2๐‘ฅ + 3๐‘ฆ, ๐‘ฅ + 2๐‘ฆ = 0, 0
โ‡’ ๐’™ = ๐ŸŽ, ๐’š = ๐ŸŽ
โ‡’ ๐’™ = ๐ŸŽ, ๐’š = ๐ŸŽ
๐Ÿ, ๐ŸŽ , ๐ŸŽ, ๐Ÿ ๐’‚๐’๐’… ๐Ÿ, ๐Ÿ , ๐Ÿ‘, ๐Ÿ ๐’๐’Š๐’๐’†๐’‚๐’“๐’๐’š ๐’Š๐’๐’…๐’†๐’‘๐’†๐’๐’…๐’†๐’๐’• .
{ ๐Ÿ, ๐ŸŽ , ๐ŸŽ, ๐Ÿ , ๐Ÿ, ๐Ÿ } ๐’๐’Š๐’๐’†๐’‚๐’“๐’๐’š ๐’Š๐’๐’…๐’†๐’‘๐’†๐’๐’…๐’†๐’๐’• ๐’Š๐’ โ„2 ?
๐’™ ๐Ÿ, ๐ŸŽ + ๐’š ๐ŸŽ, ๐Ÿ + ๐’› ๐Ÿ, ๐Ÿ = ๐ŸŽ, ๐ŸŽ
โ‡’ ๐‘ฅ, 0 + 0, ๐‘ฆ + (๐‘ง, ๐‘ง) = 0, 0
โ‡’ ๐‘ฅ + ๐‘ง, ๐‘ฆ + ๐‘ง = 0, 0 โ‡’ ๐’™ + ๐’› = ๐ŸŽ,
๐’š+๐’›=๐ŸŽ
Let z =1 โ‡’ ๐‘ฅ = โˆ’1, ๐‘ฆ = โˆ’1
โˆ’๐Ÿ ๐Ÿ, ๐ŸŽ + ๐Ÿ ๐ŸŽ, ๐Ÿ + ๐Ÿ โˆ’๐Ÿ, ๐Ÿ = ๐ŸŽ, ๐ŸŽ
{ ๐Ÿ, ๐Ÿ , ๐Ÿ, ๐Ÿ , ๐ŸŽ, ๐Ÿ } ๐’‚๐’“๐’† ๐’๐’๐’• ๐’๐’Š๐’๐’†๐’‚๐’“๐’๐’š ๐’Š๐’๐’…๐’†๐’‘๐’†๐’๐’…๐’†๐’๐’• ๐’Š๐’ โ„2 .
{ ๐Ÿ, ๐ŸŽ , ๐ŸŽ, ๐Ÿ , ๐Ÿ, ๐Ÿ , (๐Ÿ, ๐Ÿ)} are linearly dependent.
Since โˆ’๐Ÿ ๐Ÿ, ๐ŸŽ + ๐Ÿ ๐ŸŽ, ๐Ÿ โˆ’ ๐Ÿ ๐Ÿ, ๐Ÿ + ๐Ÿ(๐Ÿ, ๐Ÿ) = ๐ŸŽ, ๐ŸŽ
36
Basis
Span + Linearly Independent โŸน Basis
๐‘ฝ
๐‘บ span ๐‘ฝ
๐‘บ linearly independent
๐‘บ = { ๐’–๐Ÿ , ๐’–๐Ÿ , ๐’–๐Ÿ‘ , โ€ฆ , ๐’–๐’ }
๐Ÿ
๐Ÿ, ๐ŸŽ , (๐ŸŽ, ๐Ÿ) is a basis of โ„
and called the usual or standard basis .
๐Ÿ, ๐Ÿ , (๐Ÿ‘, ๐Ÿ) is a basis of โ„๐Ÿ .
37
๐Ÿ, ๐Ÿ = ๐Ÿ ๐Ÿ• ๐Ÿ, ๐Ÿ‘ + ๐Ÿ ๐Ÿ• (๐Ÿ‘, ๐Ÿ)
๐‘บ=
๐Ÿ, ๐Ÿ‘ , (๐Ÿ‘, ๐Ÿ) in โ„๐Ÿ .
๐’™ ๐Ÿ, ๐Ÿ‘ + ๐’š ๐Ÿ‘, ๐Ÿ = ๐ŸŽ, ๐ŸŽ
โ‡’ ๐’™, ๐Ÿ‘๐’™ + ๐Ÿ‘๐’š, ๐Ÿ๐’š = ๐ŸŽ, ๐ŸŽ
โ‡’ ๐’™ + ๐Ÿ‘๐’š, ๐Ÿ‘๐’™ + ๐Ÿ๐’š = ๐ŸŽ, ๐ŸŽ
โ‡’ ๐’™ + ๐Ÿ‘๐’š = ๐ŸŽ ,
๐Ÿ‘๐’™ + ๐Ÿ๐’š = ๐ŸŽ
โ‡’ ๐’™ = ๐ŸŽ, ๐’š = ๐ŸŽ
โ‡’ ๐ŸŽ ๐Ÿ, ๐Ÿ‘ + ๐ŸŽ ๐Ÿ‘, ๐Ÿ = ๐ŸŽ, ๐ŸŽ
๐’‚, ๐’ƒ = ๐’™ ๐Ÿ, ๐Ÿ‘ + ๐’š ๐Ÿ‘, ๐Ÿ = ๐’™, ๐Ÿ‘๐’™ + ๐Ÿ‘๐’š, ๐Ÿ๐’š
= ๐’™ + ๐Ÿ‘๐’š, ๐Ÿ‘๐’™ + ๐Ÿ๐’š
โ‡’ ๐’™ + ๐Ÿ‘๐’š = ๐’‚ ,
๐Ÿ‘๐’™ + ๐Ÿ๐’š = ๐’ƒ
โ‡’ ๐’™ = (๐Ÿ‘๐’ƒ โˆ’ ๐Ÿ๐’‚) ๐Ÿ• ,
๐’š = (๐Ÿ‘๐’‚ โˆ’ ๐’ƒ) ๐Ÿ•
๐’‚, ๐’ƒ = (๐Ÿ‘๐’ƒ โˆ’ ๐Ÿ๐’‚) ๐Ÿ• ๐Ÿ, ๐Ÿ‘ + (๐Ÿ‘๐’‚ โˆ’ ๐’ƒ) ๐Ÿ• ๐Ÿ‘, ๐Ÿ
๐Ÿ
๐‘บ is a basis of โ„ .
38
{ ๐Ÿ, ๐ŸŽ }
{ ๐Ÿ, ๐ŸŽ , ๐ŸŽ, ๐Ÿ , (๐Ÿ, ๐Ÿ)}
Not a basis
of โ„๐Ÿ
{ ๐Ÿ, ๐ŸŽ , ๐ŸŽ, ๐Ÿ , ๐Ÿ, ๐Ÿ , (๐Ÿ, ๐Ÿ)}
39
๐Ÿ, ๐ŸŽ , (๐ŸŽ, ๐Ÿ) ,
basis for โ„๐Ÿ ??
๐Ÿ, ๐Ÿ‘ , (๐Ÿ‘, ๐Ÿ) , ๐Ÿ, ๐Ÿ , (๐Ÿ‘, ๐Ÿ) only
๐’€
๐Ÿ, ๐Ÿ , ๐Ÿ, ๐ŸŽ
{ ๐Ÿ, ๐Ÿ , (๐ŸŽ, ๐Ÿ)}
(๐Ÿ, ๐Ÿ)
(โˆ’๐Ÿ’, ๐Ÿ)
(๐ŸŽ, ๐Ÿ)
{ โˆ’๐Ÿ’, ๐Ÿ , (๐Ÿ, ๐ŸŽ)} { ๐Ÿ, ๐Ÿ , (โˆ’๐Ÿ’, ๐Ÿ)}
๐’
(๐Ÿ, ๐ŸŽ)
(โˆ’๐Ÿ, โˆ’๐Ÿ)
(๐Ÿ, โˆ’๐Ÿ)
๐‘ฟ
๐Ÿ‘
โ„
๐’
,โ„
Orthogonal, orthonormal basis
Any three vectors in โ„๐Ÿ are linearly dependent.
โ„2 (a vector space ) has infinitely many different bases.
40
Vector space ๐‘ท ๐’• of all polynomials
Consider any finite set ๐‘บ = ๐’‡๐Ÿ ๐’• , ๐’‡๐Ÿ ๐’• , โ€ฆ , ๐’‡๐’Ž ๐’• of
polynomials in ๐‘ท ๐’• , and let ๐’Ž denote the largest of the degrees
of the polynomials.
Then any polynomial ๐’ˆ(๐’•) of degree exceeding ๐’Ž cannot be expressed as a
linear combination of the elements of ๐‘บ. Thus ๐‘บ cannot be a basis of ๐‘ท ๐’• .
We note that the infinite set ๐‘บโ€ฒ = {๐Ÿ, ๐’•, ๐’•๐Ÿ , ๐’•๐Ÿ‘ , โ€ฆ โ€ฆ }, consisting of
all the powers of ๐‘ก, spans ๐‘ƒ ๐‘ก and is linearly independent.
Accordingly, ๐‘† โ€ฒ is an infinite basis of ๐‘ƒ ๐‘ก .
41
Dimension
Basis โŸน Dimension
Theorem
๐‘ฝ
๐‘บ = {๐’–๐Ÿ , ๐’–๐Ÿ , โ€ฆ , ๐’–๐’Ž }
๐‘บโ€ฒ = {๐’—๐Ÿ , ๐’—๐Ÿ , โ€ฆ , ๐’—๐’ }
๐’Ž=๐’
Every basis of a vector space ๐‘ฝ has the same
number of elements..
dim ๐‘ฝ = number of vectors in any basis for ๐‘‰.
42
๐‘ฝ
๏ฌnite-dimensional spaces.
in๏ฌniteโˆ’dimensional spaces
๐’…๐’Š๐’Ž โ„ = ๐Ÿ, standard basis ๐Ÿ
๐’…๐’Š๐’Ž โ„๐Ÿ = ๐Ÿ, standard basis ๐Ÿ, ๐ŸŽ , (๐ŸŽ, ๐Ÿ)
๐’…๐’Š๐’Ž โ„๐’ = ๐’, standard basis
๐Ÿ, ๐ŸŽ, ๐ŸŽ, โ€ฆ , ๐ŸŽ , ๐ŸŽ, ๐Ÿ, ๐ŸŽ, โ€ฆ , ๐ŸŽ , โ€ฆ โ€ฆ , (๐ŸŽ, ๐ŸŽ, ๐ŸŽ, โ€ฆ , ๐Ÿ)
๐๐ข๐ฆ ๐‘ท๐’ = ๐’ + ๐Ÿ,
standard basis {๐Ÿ, ๐’•, ๐’•๐Ÿ , ๐’•๐Ÿ‘ , โ€ฆ , ๐’•๐’ }
๐๐ข๐ฆ ๐‘ด๐’Ž,๐’ = ๐’Ž๐’
๐๐ข๐ฆ ๐‘ท = ๐๐ข๐ฆ ๐‘ญ ๐‘ฟ = ๐๐ข๐ฆ ๐‘ช ๐’‚, ๐’ƒ = โˆž
๐‘บโ€ฒ = {๐Ÿ, ๐’•, ๐’•๐Ÿ , ๐’•๐Ÿ‘ , โ€ฆ โ€ฆ }
43
Theorem: Let ๐‘ฝ be a vector space of finite
dimension ๐’. Then any ๐’ + ๐Ÿ or more vectors
in ๐‘ฝ are linearly dependent.
Since ๐‘ฝ is vector space of dimension ๐‘› .
Then {๐’–๐Ÿ , ๐’–๐Ÿ , โ€ฆ , ๐’–๐’ } span ๐‘ฝ.
Let ๐’— โˆˆ ๐‘ฝ, then ๐‘ฃ = ๐‘Ž1 ๐‘ข1 + ๐‘Ž2 ๐‘ข2 + โ‹ฏ + ๐‘Ž๐‘› ๐‘ข๐‘›
โŸน 1๐‘ฃ โˆ’ ๐‘Ž1 ๐‘ข1 โˆ’ ๐‘Ž2 ๐‘ข2 โˆ’ โ‹ฏ โˆ’ ๐‘Ž๐‘› ๐‘ข๐‘› = 0
โ‡’ {๐’—, ๐’–๐Ÿ , ๐’–๐Ÿ , โ€ฆ , ๐’–๐’ } are linearly dependent
โ‡’ ๐‘› + 1 vectors are linearly dependent.
44
Sums and Direct sums
๐‘ˆ
๐‘Š
๐‘ฝ
๐‘ผ + ๐‘พ = {๐’— โˆถ ๐’— = ๐’– + ๐’˜, ๐’˜๐’‰๐’†๐’“๐’† ๐’– โˆˆ ๐‘ผ ๐’‚๐’๐’… ๐’˜ โˆˆ ๐‘พ }
๐’…๐’Š๐’Ž(๐‘ผ + ๐‘พ) = ๐’…๐’Š๐’Ž๐‘ผ + ๐’…๐’Š๐’Ž ๐‘พ โˆ’ ๐’…๐’Š๐’Ž(๐‘ผ โˆฉ ๐‘พ)
45
๐‘‰ = ๐‘ˆโจ๐‘Š
if every ๐’— โˆˆ ๐‘ฝ can be written in one and only one way as
๐‘ฃ = ๐‘ข + ๐‘ค where ๐‘ข โˆˆ ๐‘ˆ ๐‘Ž๐‘›๐‘‘ ๐‘ค โˆˆ ๐‘Š.
The vector space ๐‘ฝ is the direct sum of its subspaces ๐‘ผ and ๐‘พ if and only if:
๐‘– ๐‘‰ = ๐‘ˆ + ๐‘Š, ๐‘–๐‘– ๐‘ˆ โˆฉ ๐‘Š = {0}.
๐’€
๐‘ฝ = โ„๐Ÿ‘
๐‘ผ =
๐’‚, ๐’ƒ, ๐ŸŽ
๐’‚, ๐’ƒ โˆˆ โ„}
๐‘‰ โ‰  ๐‘ˆโจ๐‘Š
๐ŸŽ
๐’
๐‘ฟ
๐‘พ = {(๐ŸŽ, ๐’ƒ, ๐’„)| ๐’ƒ, ๐’„ โˆˆ โ„}
๐Ÿ‘, ๐Ÿ“, ๐Ÿ• = ๐Ÿ‘, ๐Ÿ, ๐ŸŽ + ๐ŸŽ, ๐Ÿ’, ๐Ÿ• ๐’‚๐’๐’… ๐’‚๐’๐’”๐’
(๐Ÿ‘, ๐Ÿ“, ๐Ÿ•) = (๐Ÿ‘, โˆ’๐Ÿ’, ๐ŸŽ) + (๐ŸŽ, ๐Ÿ—, ๐Ÿ•)
46
๐‘ฝ = โ„๐Ÿ‘
๐‘ผ =
๐‘ฝ = ๐‘ผโจ๐‘พ
๐’‚, ๐’ƒ, ๐ŸŽ
๐’‚, ๐’ƒ โˆˆ โ„}
๐’€
๐’‚, ๐’ƒ, ๐’„ = ๐’‚, ๐’ƒ , ๐ŸŽ + (๐ŸŽ, ๐ŸŽ, ๐’„)
๐ŸŽ
๐’
๐‘ฟ
๐‘พ = {(๐ŸŽ, ๐ŸŽ, ๐’„)| ๐’„ โˆˆ โ„}
๐’€
๐ŸŽ
๐‘ฟ
โ„๐Ÿ = ๐‘ณ๐Ÿ โŠ• ๐‘ณ๐Ÿ
47
Coordinates
K
n-dimension
๐‘ฃ
๐‘ฝ
๐‘ 
= ๐‘Ž1 , ๐‘Ž2 , โ€ฆ , ๐‘Ž๐‘›
๐’— โˆˆ ๐‘ฝ, ๐’— = ๐’‚๐Ÿ ๐’–๐Ÿ + ๐’‚๐Ÿ ๐’–๐Ÿ + โ‹ฏ + ๐’‚๐’ ๐’–๐’
๐’— = ๐’ƒ๐Ÿ ๐’–๐Ÿ + ๐’ƒ๐Ÿ ๐’–๐Ÿ + โ‹ฏ + ๐’ƒ๐’ ๐’–๐’
(๐’‚๐Ÿ โˆ’๐’ƒ๐Ÿ )๐’–๐Ÿ + (๐’‚๐Ÿ โˆ’๐’ƒ๐Ÿ )๐’–๐Ÿ + โ‹ฏ + (๐’‚๐’ โˆ’๐’ƒ๐’ )๐’–๐’ = ๐ŸŽ
Since ๐’–๐Ÿ , ๐’–๐Ÿ , โ€ฆ , ๐’–๐’ are linearly independent
๐’‚๐Ÿ โˆ’ ๐’ƒ๐Ÿ = ๐ŸŽ , ๐’‚๐Ÿ โˆ’ ๐’ƒ๐Ÿ = ๐ŸŽ , โ€ฆ โ€ฆ ,๐’‚๐’ โˆ’ ๐’ƒ๐’ = ๐ŸŽ
๐’‚๐Ÿ = ๐’ƒ๐Ÿ , ๐’‚๐Ÿ = ๐’ƒ๐Ÿ , โ€ฆ โ€ฆ , ๐’‚๐’ = ๐’ƒ๐’
48
Coordinates
โ„๐Ÿ
basis ๐’ = ๐’–๐Ÿ = ๐Ÿ, ๐Ÿ , ๐’–๐Ÿ = (โˆ’๐Ÿ, ๐Ÿ)
standard basis ๐„ =
๐Ÿ, ๐ŸŽ , (๐ŸŽ, ๐Ÿ)
๐’™โˆ’๐’š
๐Ÿ
โˆ’๐Ÿ
๐Ÿ“
=๐’™
+๐’š
= ๐’™+๐’š
๐Ÿ
๐Ÿ
๐Ÿ‘
๐’™โˆ’๐’š=๐Ÿ“ ๐’™=๐Ÿ’
๐’™ + ๐’š = ๐Ÿ‘ ๐’š = โˆ’๐Ÿ
๐Ÿ“, ๐Ÿ‘ = ๐Ÿ“ ๐Ÿ, ๐ŸŽ + ๐Ÿ‘(๐ŸŽ, ๐Ÿ)
๐’—
โ€ฒ
๐’€
๐‘ฌ
= [๐Ÿ“, ๐Ÿ‘]
๐‘ฟโ€ฒ
๐’€
๐’—
๐‘ท ๐Ÿ“, ๐Ÿ‘
โฆ
[2, 3] [๐Ÿ’, โˆ’๐Ÿ]
๐ŸŽ
๐‘บ = [๐Ÿ’, โˆ’๐Ÿ]
๐‘ฟโ€ฒ along ๐’–๐Ÿ
with unit length ๐’–๐Ÿ
๐’€โ€ฒ along ๐’–๐Ÿ
with unit length ๐’–๐Ÿ
๐‘ฟ
basis ๐‘บโ€ฒ = ๐Ÿ, ๐ŸŽ , (๐Ÿ, ๐Ÿ)
๐’— ๐‘บโ€ฒ = [2, 3]
49
Linear Mappings (Linear Transformations
๐‘‰
๐‘ญ ๐’—+๐’˜ =๐‘ญ ๐’— +๐‘ญ ๐’˜
โˆ€ ๐‘ฃ, ๐‘ค โˆˆ ๐‘‰
๐‘ญ ๐’„๐’— = ๐’„๐‘ญ ๐’—
โˆ€๐‘ โˆˆ๐พ
๐พ
๐‘ˆ
Target space
Domain space
๐‘ญ
๐พ
A linear transformation is said to be operation preserving
( because the same result occurs whether the operations of addition and
scalar multiplication are performed before or after the linear transformation is applied )
๐‘ญ ๐’–+๐’˜ =๐‘ญ ๐’– +๐‘ญ ๐’˜
Addition
in ๐‘ฝn
Addition
in ๐‘ผn
๐‘ญ ๐’„๐’— = ๐’„๐‘ญ(๐’—)
Scalar
multiplication
in ๐‘ฝn
Scalar
multiplication
in ๐‘ผn
50
Linear Mappings (Linear Transformations
๐‘‰
๐พ
๐‘ˆ
๐‘ญ ๐’—+๐’˜ =๐‘ญ ๐’— +๐‘ญ ๐’˜
โˆ€ ๐‘ฃ, ๐‘ค โˆˆ ๐‘‰
๐‘ญ ๐’„๐’— = ๐’„๐‘ญ ๐’—
โˆ€๐‘ โˆˆ๐พ
Target space
Domain space
๐‘ญ
๐พ
๐‘ญ ๐ŸŽ =๐ŸŽ
๐ŸŽ ๐’‚๐’๐’… ๐ŸŽ ๐’”๐’‚๐’Ž๐’† ? ?
๐น
๐น
51
Linear Mappings (Linear Transformations
๐‘‰
๐พ
๐‘ญ ๐’—+๐’˜ =๐‘ญ ๐’— +๐‘ญ ๐’˜
โˆ€ ๐‘ฃ, ๐‘ค โˆˆ ๐‘‰
๐‘ญ ๐’„๐’— = ๐’„๐‘ญ ๐’—
โˆ€๐‘ โˆˆ๐พ
๐‘ˆ
Target space
Domain space
๐‘ญ
๐พ
๐‘ญ(๐’‚๐’— + ๐’ƒ๐’˜) = ๐‘ญ(๐’‚๐’—) + ๐‘ญ(๐’ƒ๐’˜) = ๐’‚๐‘ญ(๐’—) + ๐’ƒ๐‘ญ(๐’˜)
๐’ = ๐’–๐Ÿ , ๐’–๐Ÿ , โ€ฆ , ๐’–๐’ , ๐’— โˆˆ ๐‘ฝ, ๐’— = ๐’‚๐Ÿ ๐’–๐Ÿ + ๐’‚๐Ÿ ๐’–๐Ÿ + โ‹ฏ + ๐’‚๐’ ๐’–๐’
๐‘ญ ๐’— = ๐‘ญ ๐’‚๐Ÿ ๐’–๐Ÿ + ๐’‚๐Ÿ ๐’–๐Ÿ + โ‹ฏ + ๐’‚๐’ ๐’–๐’
= ๐’‚๐Ÿ ๐‘ญ(๐’–๐Ÿ ) + ๐’‚๐Ÿ ๐‘ญ(๐’–๐Ÿ ) + โ‹ฏ + ๐’‚๐’ ๐‘ญ(๐’–๐’ )
A linear transformation from ๐‘ฝ ๐’•๐’ ๐‘ฝ is called a linear operator.
52
Example of Linear Transformations
0
๐‘ฝ
0 (๐’—) = ๐ŸŽ โˆ€๐’— โˆˆ ๐‘ฝ
Only Constant linear Mapping
๐‘ผ
๐‘ฐ ๐’— = ๐’— โˆ€๐’— โˆˆ ๐‘ฝ
๐‘ฃ
๐‘ฃ
๐‘ฝ
๐‘ฝ
53
๐‘ฝ = โ„ ๐’‚๐’๐’… ๐‘ผ = โ„ ๐‘ญ: โ„ โ†’ โ„
๐’š = ๐’‚๐’™
๐’€
๐’š = ๐’‚๐’™ + ๐’ƒ
๐’
๐‘ฟ
54
๐‘ฝ = โ„๐Ÿ‘ ๐’‚๐’๐’… ๐‘ผ = โ„๐Ÿ‘ ๐‘ญ: โ„๐Ÿ‘ โ†’ โ„๐Ÿ‘
๐‘
โ‹…
๐‘ฃ = (๐‘Ž, ๐‘, ๐‘)
Projection Mapping
๐‘ญ ๐’™, ๐’š, ๐’› = (๐’™, ๐’š, ๐ŸŽ)
๐‘ญ
โ‹…
0
๐‘Œ
๐น ๐‘ฃ = (๐‘Ž, ๐‘, 0)
๐‘‹
Rotation Mapping
๐‘ญ(๐’™, ๐’š) = (๐’™๐’„๐’๐’”๐œฝ โˆ’ ๐’š๐’”๐’Š๐’๐œฝ, ๐’™๐’”๐’Š๐’๐œฝ + ๐’š๐’„๐’๐’”๐œฝ)
๐œฝ
55
๐‘
๐‘ฝ = โ„๐Ÿ‘ ๐’‚๐’๐’… ๐‘ผ = โ„๐Ÿ‘ ๐‘น โˆถ โ„๐Ÿ‘ โ†’ โ„๐Ÿ‘
๐‘น๐’†๐’‡๐’๐’†๐’„๐’•๐’๐’“
๐‘Œ
๐‘น ๐’™, ๐’š, ๐’› = (๐’™, ๐’š, โˆ’๐’›)
๐‘‹
โฆ
๐‘ป๐’“๐’‚๐’๐’”๐’๐’‚๐’•๐’Š๐’๐’
๐‘น ๐’™, ๐’š = (๐’™ + ๐Ÿ, ๐’š + ๐Ÿ)
โฆ
56
Derivative Mapping
Let ๐‘ฝ be the vector space of polynomials over โ„.
๐‘ซ: ๐‘ฝ โ†’ ๐‘ฝ
๐’…(๐’–+๐’—)
๐’…๐’•
๐’…๐’–
๐’…๐’•
define ๐‘ซ ๐’‘ ๐’•
๐’…๐’—
๐’…๐’•
๐’…(๐’Œ๐’•)
๐’…๐’•
๐’…๐’‘
=
๐’…๐’•
๐’…๐’–
๐’Œ
๐’…๐’•
= +
and
=
๐‘ซ ๐’– + ๐’— = ๐‘ซ ๐’– + ๐‘ซ ๐’— and ๐‘ซ ๐’Œ๐’— = ๐’Œ๐‘ซ(๐’—)
Derivative Mapping is Linear.
Integral Mapping
Let ๐‘ฝ be the vector space of polynomials over โ„.
๐‘ฑโˆถ๐‘ฝโ†’โ„
๐‘ฑโˆถ๐‘ฝโ†’๐‘ฝ
define ๐‰ ๐’‡ =
๐Ÿ
๐’‡
๐ŸŽ
define ๐‰ ๐’‡ =
๐‘ฑ ๐’–+๐’— =๐‘ฑ ๐’– +๐‘ฑ ๐’—
๐’• ๐’…๐’•
๐’‡ ๐’• ๐’…๐’•
and ๐‘ฑ ๐’Œ๐’— = ๐’Œ๐‘ฑ(๐’—)
57
๐’
๐‘š
Let ๐‘ฝ = โ„ and ๐‘ผ = โ„ .
Let ๐‘จ ๐‘๐‘’ ๐’Ž × ๐’ ๐‘š๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ฅ
๐‘ณ โˆถ ๐‘ฝ โ†’ ๐‘ผ ๐’ƒ๐’š
๐‘ณ ๐’— = ๐‘จ๐’—
๐ด ๐‘ฃ + ๐‘ค = ๐ด๐‘ฃ + ๐ด๐‘ค and ๐ด ๐‘๐‘ฃ = ๐‘๐ด๐‘ฃ
for all ๐‘ฃ, ๐‘ค โˆˆ โ„ ๐‘› , ๐‘ โˆˆ โ„
Any m x n matrix A over a field โ„
๐’
๐’Ž
viewed as a linear map ๐‘จ โˆถ โ„ โ†’ โ„ .
58
Kernel and Image of a Linear Mapping
๐‘ญ
๐ŸŽ
๐‘ฝ ๐‘ฒ๐’†๐’“ ๐‘ญ = ๐’— โˆˆ ๐‘ฝ ๐‘ญ ๐’— = ๐ŸŽ} ๐‘ผ
๐‘ฐ๐’Ž ๐‘ญ = ๐’– โˆˆ ๐‘ผ
โˆƒ ๐’— โˆˆ ๐‘ฝ ๐’”๐’–๐’„๐’‰ ๐’•๐’‰๐’‚๐’• ๐‘ญ ๐’— = ๐’–}
๐‘ฒ๐’†๐’“ ๐‘ญ is a subspace of ๐‘ฝ
๐‘ฐ๐’Ž ๐‘ญ is a subspace of ๐‘ผ
59
๐‘ฝ = โ„๐Ÿ‘ ๐’‚๐’๐’… ๐‘ผ = โ„๐Ÿ‘ ๐‘ญ: โ„๐Ÿ‘ โ†’ โ„๐Ÿ‘
๐‘
โ‹…
โ‹… โ‹…
Projection Mapping
๐‘ญ ๐’™, ๐’š, ๐’› = (๐’™, ๐’š, ๐ŸŽ)
๐‘ฃ = (๐‘Ž, ๐‘, ๐‘)
0
๐‘‹
๐น ๐‘ฃ = (๐‘Ž, ๐‘, 0)
๐พ๐‘’๐‘Ÿ ๐น =
๐‘Œ
๐ผ๐‘š ๐น =
0, 0, ๐‘
๐‘Ž, ๐‘, 0
= ๐‘ง โˆ’ ๐‘Ž๐‘ฅ๐‘–๐‘ 
= ๐‘ฅ๐‘ฆ โˆ’ ๐‘๐‘™๐‘Ž๐‘›๐‘’
Rotation Mapping
๐‘ญ(๐’™, ๐’š) = (๐’™๐’„๐’๐’”๐œฝ โˆ’ ๐’š๐’”๐’Š๐’๐œฝ, ๐’™๐’”๐’Š๐’๐œฝ + ๐’š๐’„๐’๐’”๐œฝ)
๐œฝ
๐พ๐‘’๐‘Ÿ ๐น = 0
๐ผ๐‘š ๐น = โ„2 , the entire space
60
Let
๐‘ฝ = ๐‘ท(๐’•)
๐‘ฏ: ๐‘ฝ โ†’ ๐‘ฝ
be the vector space of polynomials over โ„.
define ๐‘ฏ ๐’‡ ๐’•
=
๐’…๐Ÿ‘ ๐’‡
๐’…๐’•๐Ÿ‘
๐พ๐‘’๐‘Ÿ ๐น = ๐‘๐‘œ๐‘™๐‘ฆ๐‘›๐‘œ๐‘š๐‘–๐‘Ž๐‘™๐‘  ๐‘œ๐‘“ ๐‘‘๐‘’๐‘”๐‘Ÿ๐‘’๐‘’ โ‰ค 2 = ๐‘ƒ2 (๐‘ก)
๐ผ๐‘š ๐น = ๐‘‰, the entire space
61
Rank and Nullity of a Linear Mapping
๐‘ญ
๐‘ฝ
๐’“๐’‚๐’๐’Œ ๐น = dim ๐ผ๐‘š ๐น ๐‘Ž๐‘›๐‘‘
๐’๐’–๐’๐’๐’Š๐’•๐’š(๐น) = dim(๐พ๐‘’๐‘Ÿ ๐น)
๐‘ผ
๐‹๐ž๐ญ ๐• be of finite dimension, ๐š๐ง๐ ๐’๐’†๐’• ๐‘ญ: ๐‘ฝ โ†’ ๐‘ผ ๐’ƒ๐’† ๐’๐’Š๐’๐’†๐’‚๐’“.
๐‘ป๐’‰๐’†๐’
๐’…๐’Š๐’Ž ๐‘ฝ = ๐’…๐’Š๐’Ž(๐‘ฒ๐’†๐’“ ๐‘ญ) + ๐’…๐’Š๐’Ž(๐‘ฐ๐’Ž ๐‘ญ)
= ๐’๐’–๐’๐’๐’Š๐’•๐’š(๐‘ญ) + ๐’“๐’‚๐’๐’Œ(๐‘ญ)
62
โˆƒ๐’—โ‰ ๐ŸŽ
๐‘ญ
singular
โˆƒ๐’—โ‰ ๐ŸŽโˆˆ๐‘ฝ
such that ๐‘ญ ๐’— = ๐ŸŽ
๐‘ฝ
๐‘ผ
๐‘ญ
0
๐’๐’๐’๐’š
๐‘ญ
nonsingular
๐‘ฝ
0
๐‘ฒ๐’†๐’“ ๐‘ญ = ๐ŸŽ
0
๐‘ผ
Rotation Mapping
๐‘ญ
Projection Mapping
Singular and Nonsingular Linear Mappings
63
Nonsingular
linear Mapping
๐‘ฝ finite dimension
๐’…๐’Š๐’Ž(๐‘ฝ) = ๐’…๐’Š๐’Ž(๐’Š๐’Ž๐’‚๐’ˆ๐’† ๐’๐’‡ ๐‘ญ )
๐’…๐’Š ๐’Ž ๐‘ฝ = ๐’…๐’Š ๐’Ž ๐‘ฒ๐’†๐’“ ๐‘ญ + ๐’…๐’Š ๐’Ž ๐‘ฐ๐’Ž ๐‘ญ
= ๐’…๐’Š ๐’Ž ๐ŸŽ + ๐’…๐’Š ๐’Ž ๐‘ฐ๐’Ž ๐‘ญ
= ๐’…๐’Š ๐’Ž ๐‘ฐ๐’Ž ๐‘ญ
independent
๐‘ญ
{๐‘ญ(๐’–๐Ÿ ), ๐‘ญ(๐’–๐Ÿ , ) โ€ฆ , ๐‘ญ(๐’–๐’ )}
{๐’–๐Ÿ , ๐’–๐Ÿ , โ€ฆ , ๐’–๐’ }
independent
๐‘ฝ
Let ๐’–๐Ÿ , ๐’–๐Ÿ , โ€ฆ , ๐’–๐’ independent in ๐‘ฝ.
๐’‚๐Ÿ ๐‘ญ(๐’–๐Ÿ ) + ๐’‚๐Ÿ ๐‘ญ ๐’–๐Ÿ + โ‹ฏ + ๐’‚๐’ ๐‘ญ ๐’–๐’ = 0
๐‘ญ ๐’‚๐Ÿ ๐’–๐Ÿ + ๐’‚๐Ÿ ๐’–๐Ÿ + โ‹ฏ + ๐’‚๐’ ๐’–๐’ = ๐ŸŽ
๐’‚๐Ÿ ๐’–๐Ÿ + ๐’‚๐Ÿ ๐’–๐Ÿ + โ‹ฏ + ๐’‚๐’ ๐’–๐’ = ๐ŸŽ
โŸน ๐’‚๐Ÿ = ๐ŸŽ, ๐’‚๐Ÿ = ๐ŸŽ โ€ฆ , ๐’‚๐’ = ๐ŸŽ
๐‘ผ
64
Vector Space Isomorphism
๐‘ญ
bijective
(one-to-one and onto)
Isomorphic
๐‘ฝโ‰…๐‘ผ
๐‘ญ isomorphism
๐‘ฝ
Isomorphism
โ€œ dimension preservingโ€
๐‘ผ
Suppose ๐‘ฝ finite dimensional and ๐’…๐’Š๐’Ž ๐‘ฝ = ๐’…๐’Š๐’Ž ๐‘ผ.
Isomorphism โ‡”nonsingular.
65
Theorem : Every vector space ๐‘ฝ of dimension
๐’
n over โ„ is isomorphic to โ„ .
๐Ÿ”
๐‘ด๐Ÿ‘,๐Ÿ โ‰… โ„
๐Ÿ๐ŸŽ
๐‘ท๐Ÿ— ๐’• โ‰… โ„
๐‘ป
๐‘ป ๐’— = (๐’‚๐Ÿ , ๐’‚๐Ÿ , โ€ฆ , ๐’‚๐’ )
โ„
๐’
โˆ€ ๐’‚๐Ÿ , ๐’‚๐Ÿ , โ€ฆ , ๐’‚๐’
โˆƒ unique vector
๐‘ฝ
๐’
๐’„๐Ÿ ๐’–๐Ÿ + ๐’„๐Ÿ ๐’–๐Ÿ + โ‹ฏ + ๐’„๐’ ๐’–๐’
๐’
๐‘ฝโ‰…โ„
66
๐‘ป(๐’—)
๐‘ป ๐’—๐Ÿ = ๐’‚๐Ÿ๐Ÿ ๐’–๐Ÿ + ๐’‚๐Ÿ๐Ÿ ๐’–๐Ÿ + โ‹ฏ + ๐’‚๐Ÿ๐’Ž ๐’–๐’Ž
๐‘ป ๐’—๐Ÿ = ๐’‚๐Ÿ๐Ÿ ๐’–๐Ÿ + ๐’‚๐Ÿ๐Ÿ ๐’–๐Ÿ + โ‹ฏ + ๐’‚๐Ÿ๐’Ž ๐’–๐’Ž
โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ
๐‘ป ๐’—๐’ = ๐’‚๐’๐Ÿ ๐’–๐Ÿ + ๐’‚๐’๐Ÿ ๐’–๐Ÿ + โ‹ฏ + ๐’‚๐’๐’Ž ๐’–๐’Ž
๐’‚๐’๐Ÿ
๐’‚๐Ÿ๐Ÿ
๐’‚๐Ÿ๐Ÿ
๐’‚๐Ÿ๐Ÿ
๐’‚๐Ÿ๐Ÿ โ‹ฏ ๐’‚๐’๐Ÿ
๐‘ป ๐‘บ,๐‘บโ€ฒ = ๐‘จ =
โ‹ฎ
โ‹ฑ
โ‹ฎ
๐’‚๐Ÿ๐’Ž ๐’‚๐Ÿ๐’Ž
โ‹ฏ ๐’‚๐’๐’Ž
The transpose of the above matrix of coefficients, denoted by ๐‘ป
matrix representation of ๐‘ป relative to the bases ๐‘บ and ๐‘บโ€ฒ .
๐‘ป ๐’— = ๐‘จ๐’—
๐’”
=๐‘จ๐’—
๐‘ผ
๐‘บโ€ฒ
๐‘ป
๐‘บโ€ฒ = {๐’–๐Ÿ , ๐’–๐Ÿ , โ€ฆ , ๐’–๐’Ž }
๐‘ฝ
๐‘บ = {๐’—๐Ÿ , ๐’—๐Ÿ , โ€ฆ , ๐’—๐’ }
Matrix Representation of a Linear Transformation
๐‘บ,๐‘บโ€ฒ
is called the
67
Let ๐‘ญ: โ„๐Ÿ โ†’ โ„๐Ÿ be linear operator
by ๐‘ญ ๐’™, ๐’š = (๐Ÿ๐’™ + ๐Ÿ‘๐’š, ๐Ÿ’๐’™ โˆ’ ๐Ÿ“๐’š)
Find the matrix representation of ๐‘ญ relative to the (usual) basis
{๐’†๐Ÿ = (๐Ÿ, ๐ŸŽ), ๐’†๐Ÿ = (๐ŸŽ, ๐Ÿ)}.
๐‘จ=
๐Ÿ
๐Ÿ’
๐Ÿ‘
โˆ’๐Ÿ“
๐‘ญ ๐’— = ๐‘จ๐’—
2 3
8
1
1
๐น
=
=
4 โˆ’5 2
โˆ’6
2
Find the matrix representation of ๐‘ญ
relative to the basis ๐’ = {๐’–๐Ÿ = (๐Ÿ, ๐Ÿ), ๐’–๐Ÿ = (๐Ÿ, ๐Ÿ“)}.
๐Ÿ“๐Ÿ ๐Ÿ๐Ÿ๐Ÿ—
๐‘จ=
โˆ’๐Ÿ๐Ÿ โˆ’๐Ÿ“๐Ÿ“
๐น(๐‘ฃ)
๐‘ 
=๐ด ๐‘ฃ
๐‘ 
Every linear transformation ๐‘ญ: โ„๐’ โ†’
โ„๐’Ž is given by matrix multiplication
๐‘ญ ๐’— = ๐‘จ๐’—,
68
where ๐‘จ is ๐’Ž × ๐’ matrix.
Let ๐‘…๐œƒ : โ„2 โ†’ โ„2 be linear operator
that rotates the vector in the plane around the origin by a specified angle ๐œƒ.
Find the matrix representation of ๐‘…๐œƒ relative to the (usual) basis
{๐‘’1 = (1, 0), ๐‘’2 = (0, 1)}.
๐’†๐Ÿ
๐œฝ
๐‘…๐œƒ (๐‘ฃ) = ๐ด๐œƒ ๐‘ฃ
๐œฝ
๐’†๐Ÿ
๐‘น๐œฝ
๐Ÿ
๐’„๐’๐’”๐œฝ
=
๐Ÿ‘
๐’”๐’Š๐’๐œฝ
๐Ÿ
๐Ÿ‘
โˆ’๐’”๐’Š๐’๐œฝ
๐’„๐’๐’”๐œฝ
๐‘…๐œƒ ๐‘’1 = ๐‘…๐œƒ 1, 0 = ๐‘๐‘œ๐‘ ๐œƒ, ๐‘ ๐‘–๐‘›๐œƒ = ๐‘’1 ๐‘๐‘œ๐‘ ๐œƒ + ๐‘’2 ๐‘ ๐‘–๐‘›๐œƒ
๐‘…๐œƒ ๐‘’2 = ๐‘…๐œƒ 0, 1 = โˆ’ ๐‘ ๐‘–๐‘›๐œƒ, ๐‘๐‘œ๐‘ ๐œƒ = โˆ’๐‘’1 ๐‘ ๐‘–๐‘›๐œƒ + ๐‘’2 ๐‘๐‘œ๐‘ ๐œƒ
๐‘๐‘œ๐‘ ๐œƒ
๐ด๐œƒ =
๐‘ ๐‘–๐‘›๐œƒ
โˆ’๐‘ ๐‘–๐‘›๐œƒ
๐‘๐‘œ๐‘ ๐œƒ
69
Let ๐น: โ„3 โ†’ โ„3 be linear operator
Projection Mapping ๐‘ญ ๐’™, ๐’š, ๐’› = (๐’™, ๐’š, ๐ŸŽ)
๐น ๐‘’1 = ๐น 1, 0, 0 = 1, 0, 0 = 1๐‘’1 + 0๐‘’2 + 0๐‘’3
๐น ๐‘’2 = ๐น 0, 1,0 = 0, 1,0 = 0๐‘’1 + 1๐‘’2 + 0๐‘’3
๐น ๐‘’3 = ๐น 0, 0,1 = 0, 0,0 = 0๐‘’1 + 0๐‘’2 + 0๐‘’3
๐Ÿ
๐‘จ= ๐ŸŽ
๐ŸŽ
๐ŸŽ
๐Ÿ
๐ŸŽ
๐ŸŽ
๐ŸŽ
๐ŸŽ
๐‘ญ ๐’— = ๐‘จ๐’—
Let ๐‘…: โ„3 โ†’ โ„3 be linear operator
๐‘น๐’†๐’‡๐’๐’†๐’„๐’•๐’๐’“ ๐‘น ๐’™, ๐’š, ๐’› = (๐’™, ๐’š, โˆ’๐’›)
๐น ๐‘’1 = ๐น 1, 0, 0 = 1, 0, 0 = 1๐‘’1 + 0๐‘’2 + 0๐‘’3
๐น ๐‘’2 = ๐น 0, 1,0 = 0, 1,0 = 0๐‘’1 + 1๐‘’2 + 0๐‘’3
๐น ๐‘’3 = ๐น 0, 0,1 = 0, 0, โˆ’1 = 0๐‘’1 + 0๐‘’2 โˆ’ 1๐‘’3
๐Ÿ
๐‘จ= ๐ŸŽ
๐ŸŽ
๐ŸŽ
๐Ÿ
๐ŸŽ
๐ŸŽ
๐ŸŽ
โˆ’๐Ÿ
๐‘น ๐’— = ๐‘จ๐’—
70
๐‘ฝ
be the space of all polynomial functions from โ„ into โ„ of
the form ๐’‡(๐’™) = ๐’„๐ŸŽ + ๐’„๐Ÿ ๐’™ + ๐’„๐Ÿ ๐’™๐Ÿ +๐’„๐Ÿ‘ ๐’™๐Ÿ‘
๐’…๐’‡(๐’™)
๐‘ซ โˆถ ๐‘ฝ โ†’ ๐‘ฝ ๐’…๐’†๐’‡๐’Š๐’๐’†๐’… ๐’ƒ๐’š
๐‘ซ ๐’‡ ๐’™ =
๐’…๐’™
๐Ÿ
๐Ÿ‘
๐•ญ = {๐’‡๐Ÿ = ๐Ÿ, ๐’‡๐Ÿ = ๐’™, ๐’‡๐Ÿ‘ = ๐’™ , ๐’‡๐Ÿ’ = ๐’™ } be a ordered basis of ๐‘ฝ .
Let
1
So that the matrix of D in ordered basis ๐•ญ is
๐‘ซ
๐•ญ
๐ŸŽ
= ๐ŸŽ
๐ŸŽ
๐ŸŽ
๐Ÿ
๐ŸŽ
๐ŸŽ
๐ŸŽ
๐ŸŽ
๐Ÿ
๐ŸŽ
๐ŸŽ
๐ŸŽ
๐ŸŽ
๐Ÿ‘
๐ŸŽ
๐‘ซ ๐’‡ ๐’™
= ๐‘ซ ๐“‘ ๐’‡(๐’™)
71
It would be wrong to infer from
that all linear transformations
can be represented by matrices
(of ๏ฌnite size).
For example, the di๏ฌ€erential and integral
operators do not have matrix
representations because they are
de๏ฌned on in๏ฌnite-dimensional spaces.
But linear transformations on ๏ฌnitedimensional spaces will always have
matrix representations.
72
Change of Basis
How do our representations change if we select another basis
๐‘ฝ
๐‘บโ€ฒ = {๐’—๐Ÿ , ๐’—๐Ÿ , โ€ฆ , ๐’—๐’ }
๐‘บ = {๐’–๐Ÿ , ๐’–๐Ÿ , โ€ฆ , ๐’–๐’ }
๐’—๐Ÿ = ๐’‚๐Ÿ๐Ÿ ๐’–๐Ÿ + ๐’‚๐Ÿ๐Ÿ ๐’–๐Ÿ + โ‹ฏ + ๐’‚๐Ÿ๐’ ๐’–๐’
๐’—๐Ÿ = ๐’‚๐Ÿ๐Ÿ ๐’–๐Ÿ + ๐’‚๐Ÿ๐Ÿ ๐’–๐Ÿ + โ‹ฏ + ๐’‚๐Ÿ๐’ ๐’–๐’
โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ
๐’—๐’ = ๐’‚๐’๐Ÿ ๐’–๐Ÿ + ๐’‚๐’๐Ÿ ๐’–๐Ÿ + โ‹ฏ + ๐’‚๐’๐’ ๐’–๐’ ๐‘ท =
๐‘ท is the change-of-basis matrix
(or transition matrix) from the
"old" basis ๐‘บ to the "new"
basis ๐‘บโ€ฒ.
?
๐’‚๐Ÿ๐Ÿ
๐’‚๐Ÿ๐Ÿ
๐’‚๐Ÿ๐’
โ‹ฎ
๐’‚๐Ÿ๐Ÿ
๐’‚๐Ÿ๐Ÿ
๐’‚๐Ÿ๐’
๐’‚๐’๐Ÿ
โ‹ฏ ๐’‚
๐’๐Ÿ
โ‹ฑ
โ‹ฎ
โ‹ฏ ๐’‚๐’๐’
๐‘ธ is the change-of-basis matrix
(or transition matrix) from the
๐‘บโ€ฒ to ๐‘บ.
Matrix ๐‘ท and ๐‘ธ are invertible and ๐‘ธ = ๐‘ทโˆ’๐Ÿ .
73
Change of Basis
Applications of Change-of-Basis Matrix
How a change of basis affects the coordinates of a
vector in a vector space ๐‘‰ ?
Let ๐‘ท be the change-of-basis matrix from a basis ๐‘บ
to a basis ๐‘บโ€ฒ in a vector space ๐‘ฝ. Then, for any vector
๐’— โˆˆ ๐‘ฝ, we have :
๐‘ท๐’—
hence
โˆ’๐Ÿ
๐‘ท
๐‘บโ€ฒ
๐’—
๐’”
= ๐’—
๐‘บ
= ๐’—
๐‘บโ€ฒ
and
๐‘ทโˆ’๐Ÿ transforms the coordinates of ๐’— in the original basis ๐‘บ
into the coordinates of ๐’— in the new basis ๐‘บโ€ฒ.
74
Change of Basis
Consider vector space โ„๐Ÿ
๐‘บ = {๐’†๐Ÿ , ๐’†๐Ÿ } =
๐Ÿ, ๐ŸŽ , ๐ŸŽ, ๐Ÿ
and ๐‘บโ€ฒ = {๐’–๐Ÿ , ๐’–๐Ÿ } = {(๐Ÿ, ๐Ÿ‘), (๐Ÿ, ๐Ÿ’)}
๐’–๐Ÿ = ๐Ÿ, ๐Ÿ‘ = ๐Ÿ ๐Ÿ, ๐ŸŽ + ๐Ÿ‘(๐ŸŽ, ๐Ÿ)
๐’–๐Ÿ = ๐Ÿ, ๐Ÿ’ = ๐Ÿ ๐Ÿ, ๐ŸŽ + ๐Ÿ’(๐ŸŽ, ๐Ÿ)
๐Ÿ ๐Ÿ
๐‘ท=
๐Ÿ‘ ๐Ÿ’
๐’— = (๐Ÿ“, ๐Ÿ‘)
๐’—
๐‘บ
๐‘ธ=
๐‘บโ€ฒ
=
๐Ÿ๐Ÿ‘
โˆ’๐Ÿ๐Ÿ–
๐’—
๐Ÿ’
=
โˆ’๐Ÿ‘
โˆ’๐Ÿ
๐Ÿ
๐’— = ๐Ÿ“, โˆ’๐Ÿ‘ = ๐Ÿ๐Ÿ‘ ๐Ÿ, ๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ–(๐Ÿ, ๐Ÿ’)
๐Ÿ“
=
โˆ’๐Ÿ‘
๐’—
๐‘ทโˆ’๐Ÿ
๐‘บโ€ฒ
๐Ÿ’
=
โˆ’๐Ÿ‘
โˆ’๐Ÿ
๐Ÿ
๐Ÿ๐Ÿ‘
๐Ÿ“
=
โˆ’๐Ÿ๐Ÿ–
โˆ’๐Ÿ‘
75
How a change of basis affects the matrix
representation of a linear operator ?
Let ๐‘ท be the change-of-basis matrix from a basis
๐‘บ to a basis ๐‘บโ€ฒ in a vector space ๐‘ฝ. Then, for any
linear operator ๐‘ป on ๐‘ฝ,
โˆ’๐Ÿ
๐‘ป ๐‘บโ€ฒ = ๐‘ท ๐‘ป ๐’” ๐‘ท
That is, if ๐‘จ and ๐‘ฉ are the matrix representations
of ๐‘ป relative, respectively, to ๐‘บ and ๐‘บโ€ฒ then
๐‘ฉ =
โˆ’๐Ÿ
๐‘ท
๐‘จ๐‘ท
76
๐‘ญ(๐’™, ๐’š) = (๐Ÿ๐’™ + ๐Ÿ‘๐’š , ๐Ÿ’๐’™ โˆ’ ๐Ÿ“๐’š)
Find the matrix representation of ๐‘ญ relative to the bases
๐‘บ = {๐’†๐Ÿ , ๐’†๐Ÿ } = ๐Ÿ, ๐ŸŽ , ๐ŸŽ, ๐Ÿ
and ๐‘บโ€ฒ = {๐’–๐Ÿ , ๐’–๐Ÿ } = {(๐Ÿ, ๐Ÿ‘), (๐Ÿ, ๐Ÿ’)}
๐‘ญ ๐’–๐Ÿ = ๐‘ญ
๐Ÿ
๐Ÿ‘
๐’™ + ๐’š = ๐Ÿ๐Ÿ
๐Ÿ
๐Ÿ๐Ÿ
๐Ÿ
=
=๐’™
+๐’š
and
๐Ÿ‘๐’™ + ๐Ÿ’๐’š = โˆ’๐Ÿ๐Ÿ
๐Ÿ‘
โˆ’๐Ÿ๐Ÿ
๐Ÿ’
๐Ÿ
๐Ÿ’
๐’™ + ๐’š = ๐Ÿ๐Ÿ’
๐Ÿ๐Ÿ’
๐Ÿ
๐Ÿ
=
=๐’™
+๐’š
and
๐Ÿ‘๐’™ + ๐Ÿ’๐’š = โˆ’๐Ÿ๐Ÿ”
โˆ’๐Ÿ๐Ÿ”
๐Ÿ‘
๐Ÿ’
Solving the system ๐‘ฅ = 55 , ๐‘ฆ = โˆ’44 .
Hence ๐‘ญ ๐’–๐Ÿ = ๐Ÿ“๐Ÿ“๐’–๐Ÿ โˆ’ ๐Ÿ’๐Ÿ’๐’–๐Ÿ
๐‘ญ ๐’–๐Ÿ = ๐‘ญ
Solving the system ๐‘ฅ = 72 , ๐‘ฆ = โˆ’58 .
Hence ๐‘ญ ๐’–๐Ÿ = ๐Ÿ•๐Ÿ๐’–๐Ÿ โˆ’ ๐Ÿ“๐Ÿ–๐’–๐Ÿ
๐‘ญ
๐‘บโ€ฒ
๐Ÿ“๐Ÿ“
=
โˆ’๐Ÿ’๐Ÿ’
๐Ÿ•๐Ÿ
โˆ’๐Ÿ“๐Ÿ–
๐‘ญ
๐’”
๐Ÿ ๐Ÿ‘
=
๐Ÿ’ โˆ’๐Ÿ“
77
๐Ÿ
๐‘ท=
๐Ÿ‘
๐Ÿ
๐Ÿ’
โˆ’๐Ÿ
๐‘ธ=๐‘ท
๐Ÿ’ โˆ’๐Ÿ
=
โˆ’๐Ÿ‘ ๐Ÿ
๐‘ทโˆ’๐Ÿ ๐‘ญ ๐‘บ ๐‘ท
๐Ÿ’ โˆ’๐Ÿ ๐Ÿ ๐Ÿ‘
๐Ÿ ๐Ÿ
=
โˆ’๐Ÿ‘ ๐Ÿ
๐Ÿ’ โˆ’๐Ÿ“ ๐Ÿ‘ ๐Ÿ’
๐Ÿ’ โˆ’๐Ÿ
๐Ÿ๐Ÿ
๐Ÿ๐Ÿ’
=
โˆ’๐Ÿ‘ ๐Ÿ
โˆ’๐Ÿ๐Ÿ โˆ’๐Ÿ๐Ÿ”
๐Ÿ“๐Ÿ“ ๐Ÿ•๐Ÿ
=
= ๐‘ญ
๐Ÿ’๐Ÿ’ โˆ’๐Ÿ“๐Ÿ–
๐‘บโ€ฒ
๐๐ž๐ญ ๐’๐’‡ ๐‘ญ ๐’” = โˆ’๐Ÿ๐ŸŽ โˆ’ ๐Ÿ๐Ÿ = โˆ’๐Ÿ๐Ÿ
๐‘ป๐’“๐’‚๐’„๐’† ๐’๐’‡ ๐‘ญ ๐’” = ๐Ÿ โˆ’ ๐Ÿ“ = โˆ’๐Ÿ‘
๐๐ž๐ญ ๐’๐’‡ ๐‘ญ
= โˆ’๐Ÿ‘๐Ÿ๐Ÿ—๐ŸŽ + ๐Ÿ‘๐Ÿ๐Ÿ”๐Ÿ– = โˆ’๐Ÿ๐Ÿ
๐‘ป๐’“๐’‚๐’„๐’† ๐’๐’‡ ๐‘ญ ๐’” = ๐Ÿ“๐Ÿ“ โˆ’ ๐Ÿ“๐Ÿ– = โˆ’๐Ÿ‘
78
๐‘บโ€ฒ
Similarity
๐‘จ ๐’‚๐’๐’… ๐‘ฉ square matrices
โˆƒ an invertible matrix ๐‘ท
๐‘ฉ = ๐‘ทโˆ’๐Ÿ ๐‘จ๐‘ท
๐‘ฉโ‰ˆ๐‘จ
Similarity of matrices is an equivalence relation.
Two matrices represent the same
linear operator if and only if the
matrices are similar.
That is, all the matrix representations of a linear operator
๐‘ป form an equivalence class of similar matrices.
79
References
1. Lipschutz S. Schaum's Outline of Theory and
Problems of Linear Algebra 3rd Edition
(Schaum,2004)
2. Peter J. O. Shakiban C. Applied Linear Algebra 1st
Edition
3. Carl D. Meyer Matrix Analysis And Applied Linear
Algebra
80