Vector Spaces, Linear Transformations and Matrices
Download
Report
Transcript Vector Spaces, Linear Transformations and Matrices
Vector Spaces, Linear Transformations
and Matrices
Md. Rabiul Haque
Lecturer
Department of Mathematics
University of Rajshahi, Rajshahi.
Email: [email protected]
1
Vector Spaces, Linear Transformations and
Matrices
2
Vector Spaces, Linear Transformations and Matrices
A non-empty set ๐ญ with two
operations
addition and multiplication
Fields
(A) Axioms for addition
(A1)
(A2)
(A3)
(A4)
(A5)
If ๐ฅ โ ๐น and ๐ฆ โ ๐น, then their sum ๐ฅ + ั is in ๐น.
Addition is commutative: ๐ฅ + ั = ั + ๐ฅ for all x, ั โ ๐น.
Addition is associative: (๐ฅ + ๐ฆ) + ๐ง = ๐ฅ + (๐ฆ + ๐ง) for all ๐ฅ, ๐ฆ, ๐ง โ ๐น.
๐น contains an element 0 such that 0 + x = x for every ๐ฅ โ ๐น.
To every ๐ฅ โ ๐น corresponds an element โ๐ฅ โ ๐น such that ๐ฅ + โ๐ฅ = 0.
(M) Axioms for multiplication
(M1) If ๐ฅ โ ๐น and ๐ฅ โ ๐น, then their product ๐ฅ๐ฆ is in ๐น.
(M2) Multiplication is commutative: ๐ฅ๐ฆ = ๐ฆ๐ฅ for all ๐ฅ, ๐ฆ โ ๐น .
(M3) Multiplication is associative: (๐ฅ๐ฆ)๐ง = ๐ฅ(๐ฆ๐ง) for all ๐ฅ, ๐ฆ, ๐ง โ ๐น .
(M4) ๐น contains an element 1 โ 0 such that 1๐ฅ = ๐ฅ for every ๐ฅ โ ๐น .
(M5) If ๐ฅ โ ๐น and ๐ฅ โ 0 then there exists an element
1
๐ฅ
(D) The distributive law
๐ฅ(๐ฆ + ๐ง) = ๐ฅ๐ฆ + ๐ฅ๐ง
1
๐ฅ
โ ๐น such that ๐ฅ. = 1.
holds for all
๐ฅ, ๐ฆ, ๐ง โ ๐น.
3
Vector Spaces, Linear Transformations and
Matrices
Example
โ = the set of rational numbers
โ = the set of real numbers
โ = the set
of complex numbers
1
are fields.
โ =the set of natural numbers
โค =the set of integers
not fields ( why?? )
4
Vector
๐
๐ฉ
๐
๐๐
๐
๐ด
๐
๐๐
๐
(๐ + ๐, ๐ + ๐
)
๐
(๐๐, ๐ค๐)
๐
๐
(๐, ๐)
๐ (๐, ๐)
๐ฟ
๐
๐ฟ
Marriage between Geometry and Algebra
5
๐ = (๐ฅ1 , ๐ฅ2 , ๐ฅ3 , ๐ฅ4 )
๐ = (๐ฆ1 , ๐ฆ2 , ๐ฆ3 , ๐ฆ4 )
๐+๐
= (๐ฅ1 , ๐ฅ2 , ๐ฅ3 , ๐ฅ4 ) + ๐ฆ1 , ๐ฆ2 , ๐ฆ3 , ๐ฆ4
= (๐ฅ1 + ๐ฆ1 , ๐ฅ2 + ๐ฆ2 , ๐ฅ3 + ๐ฆ3 , ๐ฅ4 + ๐ฆ4 )
๐๐ = ๐ ๐ฅ1 , ๐ฅ2 , ๐ฅ3 , ๐ฅ4 = (๐๐ฅ1 , ๐๐ฅ2 , ๐๐ฅ3 , ๐๐ฅ4 )
6
Let
๐ = โ๐ = { ๐1 , ๐2 , โฆ โฆ , ๐๐ โถ ๐๐ โ โ } and ๐น = โ.
Define two operations vector addition and scalar multiplication as follows
๐๐ , ๐๐ , โฆ โฆ , ๐๐ + ๐๐ , ๐๐ , โฆ โฆ , ๐๐ = ๐๐ + ๐๐ , ๐๐ + ๐๐ , โฆ โฆ , ๐๐ + ๐๐
๐ ๐๐ , ๐๐ , โฆ โฆ , ๐๐ = ๐๐๐ , ๐๐๐ , โฆ โฆ , ๐๐๐ where ๐ โ ๐ญ
๐ is the n-tuple of zeros
The
zero
element
in
โ
โ ๐๐ , ๐๐ , โฆ , ๐๐ is the negative of ๐๐ , ๐๐ , โฆ , ๐๐
โ ๐๐ , ๐๐ , โฆ
โ๐, 0)
0 =, ๐(0,0,0,
๐ = โฆ
๐ , โ๐๐ , โฆ , โ๐๐
Let ๐ = ๐1 , ๐2 , โฆ โฆ , ๐๐ , ๐ = ๐1 , ๐2 , โฆ โฆ , ๐๐ and ๐ = ๐1 , ๐2 , โฆ โฆ , ๐๐
๐ด1 ๐ + ๐ + ๐
= ๐1 , ๐2 , โฆ โฆ , ๐๐ + ๐1 , ๐2 , โฆ โฆ , ๐๐ + ๐1 , ๐2 , โฆ โฆ , ๐๐
= ๐1 + ๐1 , ๐2 + ๐2 , โฆ โฆ , ๐๐ + ๐๐ + ๐1 , ๐2 , โฆ โฆ , ๐๐
= ๐1 + ๐1 + ๐1 , ๐2 + ๐2 + ๐2 , โฆ โฆ , ๐๐ + ๐๐ + ๐๐
= ๐1 + (๐1 + ๐1 ), ๐2 + (๐2 +๐2 ), โฆ โฆ , ๐๐ + (๐๐ +๐๐ )
= ๐1 , ๐2 , โฆ โฆ , ๐๐ + ๐1 + ๐1 , ๐2 + ๐2 , โฆ โฆ , ๐๐ + ๐๐
=๐+ ๐+๐
๐จ๐ ๐ + ๐
= ๐1 , ๐2 , โฆ โฆ , ๐๐ + (0, 0, โฆ , 0) = ๐1 + 0, ๐2 + 0, โฆ โฆ , ๐๐ + 0 = ๐1 , ๐2 , โฆ โฆ , ๐๐
7
=๐.
๐จ๐ ๐ + โ๐
= ๐1 , ๐2 , โฆ โฆ , ๐๐ + โ๐1 , โ๐2 , โฆ , โ๐๐
= ๐1 + โ๐1 , ๐2 + (โ๐2 ), โฆ โฆ , ๐๐ + (โ๐๐ )
= (0, 0, โฆ , 0)
=๐
๐จ๐ ๐ + ๐
= ๐1 , ๐2 , โฆ โฆ , ๐๐ + ๐1 , ๐2 , โฆ โฆ , ๐๐
= ๐1 + ๐1 , ๐2 + ๐2 , โฆ โฆ , ๐๐ + ๐๐
= ๐1 + ๐1 , ๐2 + ๐2 , โฆ โฆ , ๐๐ + ๐๐
=๐+๐
๐ด๐ For any scalar ๐ โ ๐น
๐ ๐+๐
= ๐ ๐1 + ๐1 , ๐2 + ๐2 , โฆ โฆ , ๐๐ + ๐๐
= ๐๐1 + ๐๐1 , ๐๐2 + ๐๐2 , โฆ โฆ , ๐๐๐ + ๐๐๐
= ๐๐1 , ๐๐2 , โฆ โฆ , ๐๐๐ + ๐๐1 , ๐๐2 , โฆ โฆ , ๐๐๐
= ๐ ๐1 , ๐2 , โฆ โฆ , ๐๐ + ๐ ๐1 , ๐2 , โฆ โฆ , ๐๐
= ๐๐ + ๐๐.
8
๐ด๐ For any scalar ๐, ๐ โ ๐ญ
๐+๐ ๐
= ๐ + ๐ ๐1 , ๐2 , โฆ โฆ , ๐๐
= (๐ + ๐)๐1 , (๐ + ๐)๐2 , โฆ โฆ , (๐ + ๐)๐๐
= ๐๐1 + ๐๐1 , ๐๐2 + ๐๐2 , โฆ โฆ , ๐๐๐ + ๐๐๐
= ๐๐1 , ๐๐2 , โฆ โฆ , ๐๐๐ + ๐๐1 , ๐๐2 , โฆ โฆ , ๐๐๐
= ๐ ๐1 , ๐2 , โฆ , ๐๐ + ๐ ๐1 , ๐2 , โฆ โฆ , ๐๐ = ๐๐ + ๐๐
๐ด๐ For any scalar ๐, ๐ โ ๐ญ
๐๐ ๐
= ๐๐ ๐1 , ๐2 , โฆ โฆ , ๐๐
= ๐๐๐1 , ๐๐๐2 , โฆ โฆ , ๐๐๐๐ = ๐(๐๐1 ), ๐(๐๐2 ), โฆ โฆ , ๐(๐๐๐ )
= ๐ ๐๐1 , ๐๐2 , โฆ โฆ , ๐๐๐ = ๐ ๐ ๐1 , ๐2 , โฆ โฆ , ๐๐
= ๐ ๐๐
๐ด๐ For unit scalar ๐ โ ๐ญ
๐๐
= ๐ ๐๐ , ๐๐ , โฆ โฆ , ๐๐ = ๐๐๐ , ๐๐๐ , โฆ โฆ , ๐๐๐ = ๐๐ , ๐๐ , โฆ โฆ , ๐๐
=๐
9
๐ญ(๐ฟ) =
๐๐ถ , ๐๐ท , ๐๐ธ
๐
,๐ ๐ถ
,โฆโฆโฆ
๐น
10
๐ญ ๐ฟ = ๐: ๐ฟ โ ๐ฒ = โ
๐ญ(๐ฟ) denote the set of all functions of ๐ into ๐พ.
Can define
Addition and Scalar
Scalar multiplication
Multiplication
Addition
(๐ + ๐)(๐) = ๐(๐) + ๐(๐) โ๐
inโ ๐ฟ๐น
๐
?
(๐๐)(๐) = ๐๐(๐) โ๐ โ ๐ฟ
Zero and negative element in
๐น ๐ ?
Zero element in ๐น(๐)
Zero function 0
๐ ๐ = 0 โ๐ โ ๐ฟ
โ๐ ๐๐ ๐๐๐ negative of the function ๐
โ๐ ๐ = โ๐ ๐ โ ๐ โ ๐ฟ
11
Let ๐, ๐, ๐ โ ๐ญ(๐ฟ)
๐จ๐
๐+๐ +๐ ๐ฅ = ๐+๐ ๐ฅ +โ ๐ฅ = ๐ ๐ฅ +๐ ๐ฅ
=๐ ๐ฅ + ๐ ๐ฅ +โ ๐ฅ = ๐+ ๐+๐ ๐
โ๐ฅ โ ๐
+โ ๐ฅ
๐+๐ +๐=๐+ ๐+๐
๐จ๐
๐+๐ ๐ =๐ ๐ +๐ ๐ =๐ ๐ +๐= ๐
โ๐ฅ โ ๐
๐+๐=๐
๐จ๐
๐ + โ๐
๐ = ๐ ๐ + โ๐ ๐ = ๐ ๐ โ ๐ ๐ = ๐ = ๐ ๐ โ๐ฅ โ ๐
๐ + โ๐ = ๐
๐จ๐
๐ + ๐ ๐ = ๐ ๐ + ๐ ๐ = ๐ ๐ + ๐ ๐ = ๐ + ๐ ๐ โ๐ฅ โ ๐
๐+๐=๐+๐
12
๐ด๐ For any scalar ๐ โ ๐พ
๐ ๐+๐ ๐ฅ =๐ ๐+๐ ๐ฅ =๐ ๐ ๐ฅ +๐ ๐ฅ
= ๐๐ ๐ฅ + ๐๐ ๐ฅ = ๐๐ + ๐๐ ๐ฅ
= ๐๐ ๐ฅ + ๐๐ ๐ฅ
๐ ๐ + ๐ = ๐๐ + ๐๐
๐ด๐ For any scalar ๐, ๐ โ ๐ฒ
๐ + ๐ ๐ ๐ = ๐ + ๐ ๐ ๐ = ๐๐ ๐ + ๐๐ ๐ = ๐๐ ๐ + ๐๐ ๐
๐ + ๐ ๐ = ๐๐ + ๐๐
๐ด๐ For any scalar ๐, ๐ โ ๐ฒ ๐๐๐ ๐ = ๐๐๐ ๐ = ๐ ๐๐ ๐
= ๐ ๐๐
๐
(๐๐)๐ = ๐(๐๐)
๐ด๐ For unit scalar ๐ โ ๐ฒ
๐๐ ๐ = ๐๐ ๐ = ๐ ๐
๐๐ = ๐
13
Let โ be field and let
๐ท ๐ = { ๐ ๐ก = ๐0 + ๐1 ๐ก 1 + ๐2 ๐ก 2 + โฏ + ๐๐ ๐ก ๐ ,
๐ = 1,2,3, โฆ ๐๐๐ ๐๐ โ โ }
๐ท ๐ denote the set of all real polynomials ๐(๐) . ๐ ๐ =
๐ + ๐๐๐ โ ๐๐๐ + โฏ + ๐๐๐๐๐ + โฏ
Let โ be field and ๐ฅ๐๐ญ
๐ท๐ ๐ = { ๐ ๐ = ๐๐ + ๐๐ ๐๐ + ๐๐ ๐๐ + โฏ + ๐๐ ๐๐ ,
๐ โค ๐ ๐๐๐ ๐๐ โ โ }
๐ท๐ ๐ denote the set of all polynomials ๐(๐) over the
field โ ,
where the degree of ๐(๐) is less than or equal to ๐ .
14
Usual addition and scalar multiplication, we can see that
๐ ๐ก and ๐๐ ๐ก
satisfies
๐จ๐ ๐ + ๐ + ๐ = ๐ + ๐ + ๐
๐จ๐ ๐ + ๐ = ๐
๐จ๐
๐จ๐
๐ด๐
๐ด๐
๐ด๐
๐ด๐
๐ + โ๐ = ๐
๐+๐=๐+๐
๐ ๐ + ๐ = ๐๐ + ๐๐
๐ + ๐ ๐ = ๐๐ + ๐๐
๐๐ ๐ = ๐ ๐๐
๐๐ = ๐
15
๐
โ
โ
2
โ
๐๐,๐
3
Vector
Spaces over
the field ๐ญ
???????
๐ญ(๐ฟ)
๐ท๐ (๐)
๐(๐ก)
16
Vector Spaces
Abstract Concept
Let ๐ฝ Vector
be a nonempty
set involves
with two operations:
Space
four things
(i) Vector Addition
: This assigns to any
๐, ๐(๐ฝ
โ ๐ฝ, a๐ญ)
sumand
๐ + ๐ in ๐.
Two non-empty
sets
two
algebraic
operations
( addition,
(ii)
Scalar
Multiplication:
This assigns
to any ๐ โscalar
๐ฝ, ๐ โ multiplication)
๐ฒ a product ๐๐ โ ๐.
Then ๐ฝ is called a vector space over the field ๐พ
๐จ๐ ๐ + ๐ + ๐ = ๐ + ๐ + ๐
Abelian Group under
๐จ๐ ๐ + ๐ = ๐ + ๐ = ๐
Addition
๐จ๐ ๐ + โ๐ = โ๐ + ๐ = ๐.
๐จ๐ ๐ + ๐ = ๐ + ๐
+: ๐×๐ โ๐
โ
โถ๐น×๐ โ๐
๐ด๐ ๐ ๐ + ๐ = ๐๐ + ๐๐
๐ด๐ ๐ + ๐ ๐ = ๐๐ + ๐๐
๐ด๐ ๐๐ ๐ = ๐ ๐๐
17
3
โ
๐
โ
๐๐,๐
2
โ
โ
Vector
Spaces over
the field โ
Integrable
functions on the
same interval
๐ญ(๐ฟ)
๐ท๐ (๐)
๐(๐ก)
18
๐
(๐, ๐)
vector space ?
๐
โ
(๐, ๐)
vector space ?
๐, ๐ , (๐, ๐)
vector space ?
๐, ๐ โถ ๐ = ๐๐
vector space ?
๐
โ
โ
โ
โ๐
๐ฟ
Subset
Vector space
Not Vector space
Subspace
19
Subspaces
V
W
is vector space over a field ๐ฒ
๐พ โ ๐ฝ , ๐พ is subspace of ๐ฝ
Let ๐ฝ be a vector space over a field ๐ฒ and let ๐พ be a subset of V.
Then ๐พ is a subspace of ๐ฝ if ๐พ is itself a vector space over ๐ฒ with
respect to the operations of vector addition and scalar
multiplication on ๐ฝ.
if
๐โ๐พ
and ๐๐ + ๐๐ โ ๐พ
20
Subspaces of โ๐
๐
โ {(๐, ๐)}
โ Any line through (๐, ๐)
โ The whole Space (โ๐ )
โฆ
๐
โฆ
โฆ
๐ฟ
21
Subspaces of โ๐
๐
โ {(๐, ๐, ๐)}
โ Any line through (๐, ๐, ๐)
โ Any Plane through (๐, ๐, ๐)
โ The whole Space
(โ๐ )
๐
โฆ
๐ฟ
๐
22
๐บ๐๐๐๐๐๐๐๐ ๐๐ ๐ญ(๐ฟ)
All real valued function
on
๐ฟ
All bounded/odd/even/
analytic functions on ๐ฟ
23
๐บ๐๐๐๐๐๐๐๐ ๐๐ ๐ท(๐)
The set of all real
polynomials
24
๐บ๐๐๐๐๐๐๐๐ ๐๐ ๐ด๐,๐
All matrices of order
๐×๐
25
๐โฉ ๐
V
๐
๐ ๐ข๐๐ ๐๐๐๐
subspace
subspace
The intersection of any number of subspaces
of a vector space ๐ฝ is a subspace of ๐ฝ.
26
Linear combinations
๐๐ , ๐ ๐ , โฆ , ๐๐ โ ๐ฝ
๐ = ๐ ๐ ๐๐ + ๐ ๐ ๐๐ + โฏ + ๐ ๐ ๐๐
๐๐๐๐๐ ๐๐ , ๐๐ , โฆ , ๐๐ โ ๐ฒ
2
(๐, ๐), (๐, ๐) โ โ
2 1, 0 + 3 0, 1 = (2, 3)
โ4 1, 0 + 2 0, 1 = โ4, 2
0 1, 0 + 0 0, 1 = (0, 0)
๐, ๐, ๐ , ๐, ๐, ๐ , (๐, ๐, ๐) โ โ3
2 1, 1, 2 + 3 3,0, 1 + 4 2, 2, 4 = 17, 10,23
โ3 1, 1, 2 + 3 3,0, 1 + 5(2, 2, 4) = (10, 7,17)
0 1, 1, 2 + 0 3,0, 1 + 0(2, 2, 4) = (0, 0,0)
27
Spanning sets
๐๐ , ๐๐ , โฆ , ๐๐ โ ๐ฝ span ๐ฝ if every ๐ in ๐ฝ is
๐ = ๐ ๐ ๐๐ + ๐๐ ๐๐ + โฏ + ๐๐ ๐๐
Are ๐๐ = ๐, ๐ , ๐๐ = ๐, ๐ span โ๐ ?
๐, ๐ = ๐๐๐ + ๐๐๐
= ๐ ๐, ๐ + ๐ ๐, ๐
= ๐, ๐ + ๐, ๐ = ๐, ๐
โ๐=๐,
๐, ๐ = ๐๐๐ + ๐๐๐
๐=๐
๐
๐๐ , ๐๐ span โ
๐, โ๐ = ๐๐๐ โ ๐๐๐
28
Are ๐๐ = ๐, ๐ , ๐๐ = ๐, ๐ span โ๐ ?
๐, ๐ = ๐๐๐ + ๐๐๐
= ๐ ๐, ๐ + ๐ ๐, ๐
= ๐๐, ๐ + ๐๐, ๐๐ = ๐๐ + ๐๐, ๐ + ๐๐
โ ๐๐ + ๐๐ = ๐,
๐ + ๐๐ = ๐
โ ๐ = ๐๐ โ ๐๐ ,
๐ = ๐๐ โ ๐,
๐, ๐ = (๐๐ โ ๐๐)๐๐ + (๐๐ โ๐)๐๐
๐๐ , ๐๐ span โ๐
๐, โ๐ = ๐๐๐ โ ๐๐๐
29
๐จ๐๐ ๐๐ = ๐, ๐ ๐๐๐๐ โ๐ ?
๐, ๐ = ๐๐๐ = ๐ ๐, ๐ = ๐, ๐
โ ๐ = ๐,
๐=๐
๐๐ do not span โ๐
Are ๐๐ = ๐, ๐ , ๐๐ = ๐, ๐ , ๐๐ = ๐, ๐ s๐ฉ๐๐ง โ๐ ?
๐, ๐ = ๐๐๐ + ๐๐๐ + ๐๐๐
๐๐ , ๐๐ , ๐๐ span โ๐ .
Are ๐๐ = ๐, ๐ , ๐๐ = ๐, ๐ , ๐๐ = ๐, ๐ , ๐๐ = (๐, ๐) s๐ฉ๐๐ง โ๐ ?
๐, ๐ = ๐๐๐ + ๐๐๐ โ ๐๐๐ + ๐๐
๐๐ , ๐๐ , ๐๐ , ๐๐ span โ๐ .
S๐๐๐๐๐๐ ๐๐ , ๐๐ , โฆ , ๐๐ span ๐ฝ,
the set ๐, ๐๐ , ๐๐ , โฆ , ๐๐ also span ๐ฝ .
๐ = ๐๐ ๐๐ + ๐๐ ๐๐ + โฏ + ๐๐ ๐๐
๐ = ๐๐ ๐๐ + ๐๐ ๐๐ + โฏ + ๐๐ ๐๐ + ๐๐
30
Linear Spans
๐๐ , ๐๐ , โฆ , ๐๐ โ ๐ฝ
๐๐๐๐ ๐๐ =
๐
๐=๐
๐๐ ๐๐ | ๐๐ โ ๐ฒ
๐๐๐๐(๐) consists of all
scalar multiples ๐๐ ๐.
๐
๐
๐
๐
๐
Geometrically, ๐๐๐๐(๐) is the
line through the origin ๐ถ and the
endpoint of ๐.
Then ๐๐๐๐ ๐, ๐ is the plane
through the origin O and the
endpoints of ๐ข ๐๐๐ ๐ฃ .
๐
๐ฟ
๐
31
๐บ = โ
๐๐๐๐(๐บ) = {๐}.
๐บ is a spanning set of ๐๐๐๐(๐บ).
๐๐ = ๐, ๐, ๐ ,
๐๐ = ๐, ๐, ๐ , ๐๐ = ๐, ๐, ๐
๐, ๐, ๐ = ๐๐๐ + ๐๐๐ + ๐๐๐
s๐๐๐(๐๐ , ๐๐ , ๐๐ ) = โ๐ .
๐บ๐๐๐(๐๐ ) is a subspace of ๐ฝ.
๐ โ ๐๐๐๐ ๐๐ , since ๐ = ๐๐๐ + ๐๐๐ + โฆ + ๐๐๐
Let ๐ , ๐ โ ๐๐๐๐ ๐๐
โน ๐ = ๐๐=๐ ๐๐ ๐๐ and ๐ = ๐๐=๐ ๐๐ ๐๐
โ ๐๐ + ๐๐ = ๐
=
๐
๐=๐
๐
๐=๐
๐๐ + ๐
๐
๐=๐
๐๐ ๐๐
๐๐๐ + ๐๐๐ ๐๐
โ ๐๐ + ๐๐ โ ๐บ๐๐๐(๐ )
32
Theorem
Let ๐บ be a subset of a vector space ๐ฝ.
(i) Then ๐๐๐๐(๐บ) is a subspace of ๐ that contains ๐.
(ii) If ๐พ is a subspace of ๐ฝ containing ๐บ, then ๐๐๐๐(๐บ) โ ๐พ.
๐๐๐๐(๐บ) is the "smallest" subspace of ๐ฝ containing ๐บ.
๐
๐ฝ
๐บ๐๐๐(๐)
33
Linear Dependence and Independence
{ ๐, ๐ , (๐, ๐)}
โ
โ
{ ๐, ๐ }
{ ๐, ๐ , ๐, ๐ , (๐, ๐)}
โ
{ ๐, ๐ , (๐, ๐)}
โ๐
{ ๐, ๐ , ๐, ๐ , ๐, ๐ , (๐, ๐)}
๐๐ , ๐๐ , โฆ , ๐๐ โ ๐ฝ are linearly dependent
if โ scalars ๐๐ , ๐๐ , โฆ , ๐๐ in ๐ฒ, not all of them ๐, such that
๐๐ ๐๐ + ๐๐ ๐๐ + โฏ + ๐๐ ๐๐ = ๐.
Otherwise, we say that the vectors
๐๐ , ๐๐ , โฆ , ๐๐ are linearly independent.
34
Linear Dependence and Independence
๐ = ๐๐ , ๐๐ , โฆ , ๐๐ one vector is 0 , ๐ ๐๐ฆ ๐๐ =0.
๐บ linearly independent or not ?
๐๐๐ + ๐๐๐ + โฏ + ๐๐๐
๐บ dependent.
= ๐. ๐ + ๐ + โฏ + ๐ = ๐
๐, ๐๐ two vectors
โ๐๐ + ๐ ๐๐ = ๐
๐๐ , ๐๐ , โฆ , ๐๐
one vector is multiple of others , ๐ ๐๐ฆ ๐๐ = ๐๐๐ .
๐๐ , ๐๐ , โฆ , ๐๐ linearly independent or not ?
โ๐๐๐ + ๐๐๐ + ๐๐๐ + โฏ + ๐๐๐
= ๐. ๐ + ๐ + โฏ + ๐
=๐
๐๐ , ๐๐ , โฆ , ๐๐ linearly dependent.
35
{ ๐, ๐ , ๐, ๐ } ๐๐๐๐๐๐๐๐
๐๐๐
๐๐๐๐๐
๐๐๐ ๐๐ โ๐ ?
{ ๐, ๐ , ๐, ๐ } ๐๐๐๐๐๐๐๐
๐๐๐
๐๐๐๐๐
๐๐๐ ๐๐ โ๐ ?
๐ ๐, ๐ + ๐ ๐, ๐ = ๐, ๐
๐ ๐, ๐ + ๐ ๐, ๐ = ๐, ๐
โ ๐ฅ, 0 + 0, ๐ฆ = 0, 0
โ 2๐ฅ, ๐ฅ + 3๐ฆ, 2๐ฆ = 0, 0
โ ๐ฅ, ๐ฆ = 0, 0
โ 2๐ฅ + 3๐ฆ, ๐ฅ + 2๐ฆ = 0, 0
โ ๐ = ๐, ๐ = ๐
โ ๐ = ๐, ๐ = ๐
๐, ๐ , ๐, ๐ ๐๐๐
๐, ๐ , ๐, ๐ ๐๐๐๐๐๐๐๐ ๐๐๐
๐๐๐๐๐
๐๐๐ .
{ ๐, ๐ , ๐, ๐ , ๐, ๐ } ๐๐๐๐๐๐๐๐ ๐๐๐
๐๐๐๐๐
๐๐๐ ๐๐ โ2 ?
๐ ๐, ๐ + ๐ ๐, ๐ + ๐ ๐, ๐ = ๐, ๐
โ ๐ฅ, 0 + 0, ๐ฆ + (๐ง, ๐ง) = 0, 0
โ ๐ฅ + ๐ง, ๐ฆ + ๐ง = 0, 0 โ ๐ + ๐ = ๐,
๐+๐=๐
Let z =1 โ ๐ฅ = โ1, ๐ฆ = โ1
โ๐ ๐, ๐ + ๐ ๐, ๐ + ๐ โ๐, ๐ = ๐, ๐
{ ๐, ๐ , ๐, ๐ , ๐, ๐ } ๐๐๐ ๐๐๐ ๐๐๐๐๐๐๐๐ ๐๐๐
๐๐๐๐๐
๐๐๐ ๐๐ โ2 .
{ ๐, ๐ , ๐, ๐ , ๐, ๐ , (๐, ๐)} are linearly dependent.
Since โ๐ ๐, ๐ + ๐ ๐, ๐ โ ๐ ๐, ๐ + ๐(๐, ๐) = ๐, ๐
36
Basis
Span + Linearly Independent โน Basis
๐ฝ
๐บ span ๐ฝ
๐บ linearly independent
๐บ = { ๐๐ , ๐๐ , ๐๐ , โฆ , ๐๐ }
๐
๐, ๐ , (๐, ๐) is a basis of โ
and called the usual or standard basis .
๐, ๐ , (๐, ๐) is a basis of โ๐ .
37
๐, ๐ = ๐ ๐ ๐, ๐ + ๐ ๐ (๐, ๐)
๐บ=
๐, ๐ , (๐, ๐) in โ๐ .
๐ ๐, ๐ + ๐ ๐, ๐ = ๐, ๐
โ ๐, ๐๐ + ๐๐, ๐๐ = ๐, ๐
โ ๐ + ๐๐, ๐๐ + ๐๐ = ๐, ๐
โ ๐ + ๐๐ = ๐ ,
๐๐ + ๐๐ = ๐
โ ๐ = ๐, ๐ = ๐
โ ๐ ๐, ๐ + ๐ ๐, ๐ = ๐, ๐
๐, ๐ = ๐ ๐, ๐ + ๐ ๐, ๐ = ๐, ๐๐ + ๐๐, ๐๐
= ๐ + ๐๐, ๐๐ + ๐๐
โ ๐ + ๐๐ = ๐ ,
๐๐ + ๐๐ = ๐
โ ๐ = (๐๐ โ ๐๐) ๐ ,
๐ = (๐๐ โ ๐) ๐
๐, ๐ = (๐๐ โ ๐๐) ๐ ๐, ๐ + (๐๐ โ ๐) ๐ ๐, ๐
๐
๐บ is a basis of โ .
38
{ ๐, ๐ }
{ ๐, ๐ , ๐, ๐ , (๐, ๐)}
Not a basis
of โ๐
{ ๐, ๐ , ๐, ๐ , ๐, ๐ , (๐, ๐)}
39
๐, ๐ , (๐, ๐) ,
basis for โ๐ ??
๐, ๐ , (๐, ๐) , ๐, ๐ , (๐, ๐) only
๐
๐, ๐ , ๐, ๐
{ ๐, ๐ , (๐, ๐)}
(๐, ๐)
(โ๐, ๐)
(๐, ๐)
{ โ๐, ๐ , (๐, ๐)} { ๐, ๐ , (โ๐, ๐)}
๐
(๐, ๐)
(โ๐, โ๐)
(๐, โ๐)
๐ฟ
๐
โ
๐
,โ
Orthogonal, orthonormal basis
Any three vectors in โ๐ are linearly dependent.
โ2 (a vector space ) has infinitely many different bases.
40
Vector space ๐ท ๐ of all polynomials
Consider any finite set ๐บ = ๐๐ ๐ , ๐๐ ๐ , โฆ , ๐๐ ๐ of
polynomials in ๐ท ๐ , and let ๐ denote the largest of the degrees
of the polynomials.
Then any polynomial ๐(๐) of degree exceeding ๐ cannot be expressed as a
linear combination of the elements of ๐บ. Thus ๐บ cannot be a basis of ๐ท ๐ .
We note that the infinite set ๐บโฒ = {๐, ๐, ๐๐ , ๐๐ , โฆ โฆ }, consisting of
all the powers of ๐ก, spans ๐ ๐ก and is linearly independent.
Accordingly, ๐ โฒ is an infinite basis of ๐ ๐ก .
41
Dimension
Basis โน Dimension
Theorem
๐ฝ
๐บ = {๐๐ , ๐๐ , โฆ , ๐๐ }
๐บโฒ = {๐๐ , ๐๐ , โฆ , ๐๐ }
๐=๐
Every basis of a vector space ๐ฝ has the same
number of elements..
dim ๐ฝ = number of vectors in any basis for ๐.
42
๐ฝ
๏ฌnite-dimensional spaces.
in๏ฌniteโdimensional spaces
๐
๐๐ โ = ๐, standard basis ๐
๐
๐๐ โ๐ = ๐, standard basis ๐, ๐ , (๐, ๐)
๐
๐๐ โ๐ = ๐, standard basis
๐, ๐, ๐, โฆ , ๐ , ๐, ๐, ๐, โฆ , ๐ , โฆ โฆ , (๐, ๐, ๐, โฆ , ๐)
๐๐ข๐ฆ ๐ท๐ = ๐ + ๐,
standard basis {๐, ๐, ๐๐ , ๐๐ , โฆ , ๐๐ }
๐๐ข๐ฆ ๐ด๐,๐ = ๐๐
๐๐ข๐ฆ ๐ท = ๐๐ข๐ฆ ๐ญ ๐ฟ = ๐๐ข๐ฆ ๐ช ๐, ๐ = โ
๐บโฒ = {๐, ๐, ๐๐ , ๐๐ , โฆ โฆ }
43
Theorem: Let ๐ฝ be a vector space of finite
dimension ๐. Then any ๐ + ๐ or more vectors
in ๐ฝ are linearly dependent.
Since ๐ฝ is vector space of dimension ๐ .
Then {๐๐ , ๐๐ , โฆ , ๐๐ } span ๐ฝ.
Let ๐ โ ๐ฝ, then ๐ฃ = ๐1 ๐ข1 + ๐2 ๐ข2 + โฏ + ๐๐ ๐ข๐
โน 1๐ฃ โ ๐1 ๐ข1 โ ๐2 ๐ข2 โ โฏ โ ๐๐ ๐ข๐ = 0
โ {๐, ๐๐ , ๐๐ , โฆ , ๐๐ } are linearly dependent
โ ๐ + 1 vectors are linearly dependent.
44
Sums and Direct sums
๐
๐
๐ฝ
๐ผ + ๐พ = {๐ โถ ๐ = ๐ + ๐, ๐๐๐๐๐ ๐ โ ๐ผ ๐๐๐
๐ โ ๐พ }
๐
๐๐(๐ผ + ๐พ) = ๐
๐๐๐ผ + ๐
๐๐ ๐พ โ ๐
๐๐(๐ผ โฉ ๐พ)
45
๐ = ๐โจ๐
if every ๐ โ ๐ฝ can be written in one and only one way as
๐ฃ = ๐ข + ๐ค where ๐ข โ ๐ ๐๐๐ ๐ค โ ๐.
The vector space ๐ฝ is the direct sum of its subspaces ๐ผ and ๐พ if and only if:
๐ ๐ = ๐ + ๐, ๐๐ ๐ โฉ ๐ = {0}.
๐
๐ฝ = โ๐
๐ผ =
๐, ๐, ๐
๐, ๐ โ โ}
๐ โ ๐โจ๐
๐
๐
๐ฟ
๐พ = {(๐, ๐, ๐)| ๐, ๐ โ โ}
๐, ๐, ๐ = ๐, ๐, ๐ + ๐, ๐, ๐ ๐๐๐
๐๐๐๐
(๐, ๐, ๐) = (๐, โ๐, ๐) + (๐, ๐, ๐)
46
๐ฝ = โ๐
๐ผ =
๐ฝ = ๐ผโจ๐พ
๐, ๐, ๐
๐, ๐ โ โ}
๐
๐, ๐, ๐ = ๐, ๐ , ๐ + (๐, ๐, ๐)
๐
๐
๐ฟ
๐พ = {(๐, ๐, ๐)| ๐ โ โ}
๐
๐
๐ฟ
โ๐ = ๐ณ๐ โ ๐ณ๐
47
Coordinates
K
n-dimension
๐ฃ
๐ฝ
๐
= ๐1 , ๐2 , โฆ , ๐๐
๐ โ ๐ฝ, ๐ = ๐๐ ๐๐ + ๐๐ ๐๐ + โฏ + ๐๐ ๐๐
๐ = ๐๐ ๐๐ + ๐๐ ๐๐ + โฏ + ๐๐ ๐๐
(๐๐ โ๐๐ )๐๐ + (๐๐ โ๐๐ )๐๐ + โฏ + (๐๐ โ๐๐ )๐๐ = ๐
Since ๐๐ , ๐๐ , โฆ , ๐๐ are linearly independent
๐๐ โ ๐๐ = ๐ , ๐๐ โ ๐๐ = ๐ , โฆ โฆ ,๐๐ โ ๐๐ = ๐
๐๐ = ๐๐ , ๐๐ = ๐๐ , โฆ โฆ , ๐๐ = ๐๐
48
Coordinates
โ๐
basis ๐ = ๐๐ = ๐, ๐ , ๐๐ = (โ๐, ๐)
standard basis ๐ =
๐, ๐ , (๐, ๐)
๐โ๐
๐
โ๐
๐
=๐
+๐
= ๐+๐
๐
๐
๐
๐โ๐=๐ ๐=๐
๐ + ๐ = ๐ ๐ = โ๐
๐, ๐ = ๐ ๐, ๐ + ๐(๐, ๐)
๐
โฒ
๐
๐ฌ
= [๐, ๐]
๐ฟโฒ
๐
๐
๐ท ๐, ๐
โฆ
[2, 3] [๐, โ๐]
๐
๐บ = [๐, โ๐]
๐ฟโฒ along ๐๐
with unit length ๐๐
๐โฒ along ๐๐
with unit length ๐๐
๐ฟ
basis ๐บโฒ = ๐, ๐ , (๐, ๐)
๐ ๐บโฒ = [2, 3]
49
Linear Mappings (Linear Transformations
๐
๐ญ ๐+๐ =๐ญ ๐ +๐ญ ๐
โ ๐ฃ, ๐ค โ ๐
๐ญ ๐๐ = ๐๐ญ ๐
โ๐ โ๐พ
๐พ
๐
Target space
Domain space
๐ญ
๐พ
A linear transformation is said to be operation preserving
( because the same result occurs whether the operations of addition and
scalar multiplication are performed before or after the linear transformation is applied )
๐ญ ๐+๐ =๐ญ ๐ +๐ญ ๐
Addition
in ๐ฝn
Addition
in ๐ผn
๐ญ ๐๐ = ๐๐ญ(๐)
Scalar
multiplication
in ๐ฝn
Scalar
multiplication
in ๐ผn
50
Linear Mappings (Linear Transformations
๐
๐พ
๐
๐ญ ๐+๐ =๐ญ ๐ +๐ญ ๐
โ ๐ฃ, ๐ค โ ๐
๐ญ ๐๐ = ๐๐ญ ๐
โ๐ โ๐พ
Target space
Domain space
๐ญ
๐พ
๐ญ ๐ =๐
๐ ๐๐๐
๐ ๐๐๐๐ ? ?
๐น
๐น
51
Linear Mappings (Linear Transformations
๐
๐พ
๐ญ ๐+๐ =๐ญ ๐ +๐ญ ๐
โ ๐ฃ, ๐ค โ ๐
๐ญ ๐๐ = ๐๐ญ ๐
โ๐ โ๐พ
๐
Target space
Domain space
๐ญ
๐พ
๐ญ(๐๐ + ๐๐) = ๐ญ(๐๐) + ๐ญ(๐๐) = ๐๐ญ(๐) + ๐๐ญ(๐)
๐ = ๐๐ , ๐๐ , โฆ , ๐๐ , ๐ โ ๐ฝ, ๐ = ๐๐ ๐๐ + ๐๐ ๐๐ + โฏ + ๐๐ ๐๐
๐ญ ๐ = ๐ญ ๐๐ ๐๐ + ๐๐ ๐๐ + โฏ + ๐๐ ๐๐
= ๐๐ ๐ญ(๐๐ ) + ๐๐ ๐ญ(๐๐ ) + โฏ + ๐๐ ๐ญ(๐๐ )
A linear transformation from ๐ฝ ๐๐ ๐ฝ is called a linear operator.
52
Example of Linear Transformations
0
๐ฝ
0 (๐) = ๐ โ๐ โ ๐ฝ
Only Constant linear Mapping
๐ผ
๐ฐ ๐ = ๐ โ๐ โ ๐ฝ
๐ฃ
๐ฃ
๐ฝ
๐ฝ
53
๐ฝ = โ ๐๐๐
๐ผ = โ ๐ญ: โ โ โ
๐ = ๐๐
๐
๐ = ๐๐ + ๐
๐
๐ฟ
54
๐ฝ = โ๐ ๐๐๐
๐ผ = โ๐ ๐ญ: โ๐ โ โ๐
๐
โ
๐ฃ = (๐, ๐, ๐)
Projection Mapping
๐ญ ๐, ๐, ๐ = (๐, ๐, ๐)
๐ญ
โ
0
๐
๐น ๐ฃ = (๐, ๐, 0)
๐
Rotation Mapping
๐ญ(๐, ๐) = (๐๐๐๐๐ฝ โ ๐๐๐๐๐ฝ, ๐๐๐๐๐ฝ + ๐๐๐๐๐ฝ)
๐ฝ
55
๐
๐ฝ = โ๐ ๐๐๐
๐ผ = โ๐ ๐น โถ โ๐ โ โ๐
๐น๐๐๐๐๐๐๐๐
๐
๐น ๐, ๐, ๐ = (๐, ๐, โ๐)
๐
โฆ
๐ป๐๐๐๐๐๐๐๐๐๐
๐น ๐, ๐ = (๐ + ๐, ๐ + ๐)
โฆ
56
Derivative Mapping
Let ๐ฝ be the vector space of polynomials over โ.
๐ซ: ๐ฝ โ ๐ฝ
๐
(๐+๐)
๐
๐
๐
๐
๐
๐
define ๐ซ ๐ ๐
๐
๐
๐
๐
๐
(๐๐)
๐
๐
๐
๐
=
๐
๐
๐
๐
๐
๐
๐
= +
and
=
๐ซ ๐ + ๐ = ๐ซ ๐ + ๐ซ ๐ and ๐ซ ๐๐ = ๐๐ซ(๐)
Derivative Mapping is Linear.
Integral Mapping
Let ๐ฝ be the vector space of polynomials over โ.
๐ฑโถ๐ฝโโ
๐ฑโถ๐ฝโ๐ฝ
define ๐ ๐ =
๐
๐
๐
define ๐ ๐ =
๐ฑ ๐+๐ =๐ฑ ๐ +๐ฑ ๐
๐ ๐
๐
๐ ๐ ๐
๐
and ๐ฑ ๐๐ = ๐๐ฑ(๐)
57
๐
๐
Let ๐ฝ = โ and ๐ผ = โ .
Let ๐จ ๐๐ ๐ × ๐ ๐๐๐ก๐๐๐ฅ
๐ณ โถ ๐ฝ โ ๐ผ ๐๐
๐ณ ๐ = ๐จ๐
๐ด ๐ฃ + ๐ค = ๐ด๐ฃ + ๐ด๐ค and ๐ด ๐๐ฃ = ๐๐ด๐ฃ
for all ๐ฃ, ๐ค โ โ ๐ , ๐ โ โ
Any m x n matrix A over a field โ
๐
๐
viewed as a linear map ๐จ โถ โ โ โ .
58
Kernel and Image of a Linear Mapping
๐ญ
๐
๐ฝ ๐ฒ๐๐ ๐ญ = ๐ โ ๐ฝ ๐ญ ๐ = ๐} ๐ผ
๐ฐ๐ ๐ญ = ๐ โ ๐ผ
โ ๐ โ ๐ฝ ๐๐๐๐ ๐๐๐๐ ๐ญ ๐ = ๐}
๐ฒ๐๐ ๐ญ is a subspace of ๐ฝ
๐ฐ๐ ๐ญ is a subspace of ๐ผ
59
๐ฝ = โ๐ ๐๐๐
๐ผ = โ๐ ๐ญ: โ๐ โ โ๐
๐
โ
โ
โ
Projection Mapping
๐ญ ๐, ๐, ๐ = (๐, ๐, ๐)
๐ฃ = (๐, ๐, ๐)
0
๐
๐น ๐ฃ = (๐, ๐, 0)
๐พ๐๐ ๐น =
๐
๐ผ๐ ๐น =
0, 0, ๐
๐, ๐, 0
= ๐ง โ ๐๐ฅ๐๐
= ๐ฅ๐ฆ โ ๐๐๐๐๐
Rotation Mapping
๐ญ(๐, ๐) = (๐๐๐๐๐ฝ โ ๐๐๐๐๐ฝ, ๐๐๐๐๐ฝ + ๐๐๐๐๐ฝ)
๐ฝ
๐พ๐๐ ๐น = 0
๐ผ๐ ๐น = โ2 , the entire space
60
Let
๐ฝ = ๐ท(๐)
๐ฏ: ๐ฝ โ ๐ฝ
be the vector space of polynomials over โ.
define ๐ฏ ๐ ๐
=
๐
๐ ๐
๐
๐๐
๐พ๐๐ ๐น = ๐๐๐๐ฆ๐๐๐๐๐๐๐ ๐๐ ๐๐๐๐๐๐ โค 2 = ๐2 (๐ก)
๐ผ๐ ๐น = ๐, the entire space
61
Rank and Nullity of a Linear Mapping
๐ญ
๐ฝ
๐๐๐๐ ๐น = dim ๐ผ๐ ๐น ๐๐๐
๐๐๐๐๐๐๐(๐น) = dim(๐พ๐๐ ๐น)
๐ผ
๐๐๐ญ ๐ be of finite dimension, ๐๐ง๐ ๐๐๐ ๐ญ: ๐ฝ โ ๐ผ ๐๐ ๐๐๐๐๐๐.
๐ป๐๐๐
๐
๐๐ ๐ฝ = ๐
๐๐(๐ฒ๐๐ ๐ญ) + ๐
๐๐(๐ฐ๐ ๐ญ)
= ๐๐๐๐๐๐๐(๐ญ) + ๐๐๐๐(๐ญ)
62
โ๐โ ๐
๐ญ
singular
โ๐โ ๐โ๐ฝ
such that ๐ญ ๐ = ๐
๐ฝ
๐ผ
๐ญ
0
๐๐๐๐
๐ญ
nonsingular
๐ฝ
0
๐ฒ๐๐ ๐ญ = ๐
0
๐ผ
Rotation Mapping
๐ญ
Projection Mapping
Singular and Nonsingular Linear Mappings
63
Nonsingular
linear Mapping
๐ฝ finite dimension
๐
๐๐(๐ฝ) = ๐
๐๐(๐๐๐๐๐ ๐๐ ๐ญ )
๐
๐ ๐ ๐ฝ = ๐
๐ ๐ ๐ฒ๐๐ ๐ญ + ๐
๐ ๐ ๐ฐ๐ ๐ญ
= ๐
๐ ๐ ๐ + ๐
๐ ๐ ๐ฐ๐ ๐ญ
= ๐
๐ ๐ ๐ฐ๐ ๐ญ
independent
๐ญ
{๐ญ(๐๐ ), ๐ญ(๐๐ , ) โฆ , ๐ญ(๐๐ )}
{๐๐ , ๐๐ , โฆ , ๐๐ }
independent
๐ฝ
Let ๐๐ , ๐๐ , โฆ , ๐๐ independent in ๐ฝ.
๐๐ ๐ญ(๐๐ ) + ๐๐ ๐ญ ๐๐ + โฏ + ๐๐ ๐ญ ๐๐ = 0
๐ญ ๐๐ ๐๐ + ๐๐ ๐๐ + โฏ + ๐๐ ๐๐ = ๐
๐๐ ๐๐ + ๐๐ ๐๐ + โฏ + ๐๐ ๐๐ = ๐
โน ๐๐ = ๐, ๐๐ = ๐ โฆ , ๐๐ = ๐
๐ผ
64
Vector Space Isomorphism
๐ญ
bijective
(one-to-one and onto)
Isomorphic
๐ฝโ
๐ผ
๐ญ isomorphism
๐ฝ
Isomorphism
โ dimension preservingโ
๐ผ
Suppose ๐ฝ finite dimensional and ๐
๐๐ ๐ฝ = ๐
๐๐ ๐ผ.
Isomorphism โnonsingular.
65
Theorem : Every vector space ๐ฝ of dimension
๐
n over โ is isomorphic to โ .
๐
๐ด๐,๐ โ
โ
๐๐
๐ท๐ ๐ โ
โ
๐ป
๐ป ๐ = (๐๐ , ๐๐ , โฆ , ๐๐ )
โ
๐
โ ๐๐ , ๐๐ , โฆ , ๐๐
โ unique vector
๐ฝ
๐
๐๐ ๐๐ + ๐๐ ๐๐ + โฏ + ๐๐ ๐๐
๐
๐ฝโ
โ
66
๐ป(๐)
๐ป ๐๐ = ๐๐๐ ๐๐ + ๐๐๐ ๐๐ + โฏ + ๐๐๐ ๐๐
๐ป ๐๐ = ๐๐๐ ๐๐ + ๐๐๐ ๐๐ + โฏ + ๐๐๐ ๐๐
โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ
๐ป ๐๐ = ๐๐๐ ๐๐ + ๐๐๐ ๐๐ + โฏ + ๐๐๐ ๐๐
๐๐๐
๐๐๐
๐๐๐
๐๐๐
๐๐๐ โฏ ๐๐๐
๐ป ๐บ,๐บโฒ = ๐จ =
โฎ
โฑ
โฎ
๐๐๐ ๐๐๐
โฏ ๐๐๐
The transpose of the above matrix of coefficients, denoted by ๐ป
matrix representation of ๐ป relative to the bases ๐บ and ๐บโฒ .
๐ป ๐ = ๐จ๐
๐
=๐จ๐
๐ผ
๐บโฒ
๐ป
๐บโฒ = {๐๐ , ๐๐ , โฆ , ๐๐ }
๐ฝ
๐บ = {๐๐ , ๐๐ , โฆ , ๐๐ }
Matrix Representation of a Linear Transformation
๐บ,๐บโฒ
is called the
67
Let ๐ญ: โ๐ โ โ๐ be linear operator
by ๐ญ ๐, ๐ = (๐๐ + ๐๐, ๐๐ โ ๐๐)
Find the matrix representation of ๐ญ relative to the (usual) basis
{๐๐ = (๐, ๐), ๐๐ = (๐, ๐)}.
๐จ=
๐
๐
๐
โ๐
๐ญ ๐ = ๐จ๐
2 3
8
1
1
๐น
=
=
4 โ5 2
โ6
2
Find the matrix representation of ๐ญ
relative to the basis ๐ = {๐๐ = (๐, ๐), ๐๐ = (๐, ๐)}.
๐๐ ๐๐๐
๐จ=
โ๐๐ โ๐๐
๐น(๐ฃ)
๐
=๐ด ๐ฃ
๐
Every linear transformation ๐ญ: โ๐ โ
โ๐ is given by matrix multiplication
๐ญ ๐ = ๐จ๐,
68
where ๐จ is ๐ × ๐ matrix.
Let ๐
๐ : โ2 โ โ2 be linear operator
that rotates the vector in the plane around the origin by a specified angle ๐.
Find the matrix representation of ๐
๐ relative to the (usual) basis
{๐1 = (1, 0), ๐2 = (0, 1)}.
๐๐
๐ฝ
๐
๐ (๐ฃ) = ๐ด๐ ๐ฃ
๐ฝ
๐๐
๐น๐ฝ
๐
๐๐๐๐ฝ
=
๐
๐๐๐๐ฝ
๐
๐
โ๐๐๐๐ฝ
๐๐๐๐ฝ
๐
๐ ๐1 = ๐
๐ 1, 0 = ๐๐๐ ๐, ๐ ๐๐๐ = ๐1 ๐๐๐ ๐ + ๐2 ๐ ๐๐๐
๐
๐ ๐2 = ๐
๐ 0, 1 = โ ๐ ๐๐๐, ๐๐๐ ๐ = โ๐1 ๐ ๐๐๐ + ๐2 ๐๐๐ ๐
๐๐๐ ๐
๐ด๐ =
๐ ๐๐๐
โ๐ ๐๐๐
๐๐๐ ๐
69
Let ๐น: โ3 โ โ3 be linear operator
Projection Mapping ๐ญ ๐, ๐, ๐ = (๐, ๐, ๐)
๐น ๐1 = ๐น 1, 0, 0 = 1, 0, 0 = 1๐1 + 0๐2 + 0๐3
๐น ๐2 = ๐น 0, 1,0 = 0, 1,0 = 0๐1 + 1๐2 + 0๐3
๐น ๐3 = ๐น 0, 0,1 = 0, 0,0 = 0๐1 + 0๐2 + 0๐3
๐
๐จ= ๐
๐
๐
๐
๐
๐
๐
๐
๐ญ ๐ = ๐จ๐
Let ๐
: โ3 โ โ3 be linear operator
๐น๐๐๐๐๐๐๐๐ ๐น ๐, ๐, ๐ = (๐, ๐, โ๐)
๐น ๐1 = ๐น 1, 0, 0 = 1, 0, 0 = 1๐1 + 0๐2 + 0๐3
๐น ๐2 = ๐น 0, 1,0 = 0, 1,0 = 0๐1 + 1๐2 + 0๐3
๐น ๐3 = ๐น 0, 0,1 = 0, 0, โ1 = 0๐1 + 0๐2 โ 1๐3
๐
๐จ= ๐
๐
๐
๐
๐
๐
๐
โ๐
๐น ๐ = ๐จ๐
70
๐ฝ
be the space of all polynomial functions from โ into โ of
the form ๐(๐) = ๐๐ + ๐๐ ๐ + ๐๐ ๐๐ +๐๐ ๐๐
๐
๐(๐)
๐ซ โถ ๐ฝ โ ๐ฝ ๐
๐๐๐๐๐๐
๐๐
๐ซ ๐ ๐ =
๐
๐
๐
๐
๐ญ = {๐๐ = ๐, ๐๐ = ๐, ๐๐ = ๐ , ๐๐ = ๐ } be a ordered basis of ๐ฝ .
Let
1
So that the matrix of D in ordered basis ๐ญ is
๐ซ
๐ญ
๐
= ๐
๐
๐
๐
๐
๐
๐
๐
๐
๐
๐
๐
๐
๐
๐
๐ซ ๐ ๐
= ๐ซ ๐ ๐(๐)
71
It would be wrong to infer from
that all linear transformations
can be represented by matrices
(of ๏ฌnite size).
For example, the di๏ฌerential and integral
operators do not have matrix
representations because they are
de๏ฌned on in๏ฌnite-dimensional spaces.
But linear transformations on ๏ฌnitedimensional spaces will always have
matrix representations.
72
Change of Basis
How do our representations change if we select another basis
๐ฝ
๐บโฒ = {๐๐ , ๐๐ , โฆ , ๐๐ }
๐บ = {๐๐ , ๐๐ , โฆ , ๐๐ }
๐๐ = ๐๐๐ ๐๐ + ๐๐๐ ๐๐ + โฏ + ๐๐๐ ๐๐
๐๐ = ๐๐๐ ๐๐ + ๐๐๐ ๐๐ + โฏ + ๐๐๐ ๐๐
โฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆโฆ
๐๐ = ๐๐๐ ๐๐ + ๐๐๐ ๐๐ + โฏ + ๐๐๐ ๐๐ ๐ท =
๐ท is the change-of-basis matrix
(or transition matrix) from the
"old" basis ๐บ to the "new"
basis ๐บโฒ.
?
๐๐๐
๐๐๐
๐๐๐
โฎ
๐๐๐
๐๐๐
๐๐๐
๐๐๐
โฏ ๐
๐๐
โฑ
โฎ
โฏ ๐๐๐
๐ธ is the change-of-basis matrix
(or transition matrix) from the
๐บโฒ to ๐บ.
Matrix ๐ท and ๐ธ are invertible and ๐ธ = ๐ทโ๐ .
73
Change of Basis
Applications of Change-of-Basis Matrix
How a change of basis affects the coordinates of a
vector in a vector space ๐ ?
Let ๐ท be the change-of-basis matrix from a basis ๐บ
to a basis ๐บโฒ in a vector space ๐ฝ. Then, for any vector
๐ โ ๐ฝ, we have :
๐ท๐
hence
โ๐
๐ท
๐บโฒ
๐
๐
= ๐
๐บ
= ๐
๐บโฒ
and
๐ทโ๐ transforms the coordinates of ๐ in the original basis ๐บ
into the coordinates of ๐ in the new basis ๐บโฒ.
74
Change of Basis
Consider vector space โ๐
๐บ = {๐๐ , ๐๐ } =
๐, ๐ , ๐, ๐
and ๐บโฒ = {๐๐ , ๐๐ } = {(๐, ๐), (๐, ๐)}
๐๐ = ๐, ๐ = ๐ ๐, ๐ + ๐(๐, ๐)
๐๐ = ๐, ๐ = ๐ ๐, ๐ + ๐(๐, ๐)
๐ ๐
๐ท=
๐ ๐
๐ = (๐, ๐)
๐
๐บ
๐ธ=
๐บโฒ
=
๐๐
โ๐๐
๐
๐
=
โ๐
โ๐
๐
๐ = ๐, โ๐ = ๐๐ ๐, ๐ โ ๐๐(๐, ๐)
๐
=
โ๐
๐
๐ทโ๐
๐บโฒ
๐
=
โ๐
โ๐
๐
๐๐
๐
=
โ๐๐
โ๐
75
How a change of basis affects the matrix
representation of a linear operator ?
Let ๐ท be the change-of-basis matrix from a basis
๐บ to a basis ๐บโฒ in a vector space ๐ฝ. Then, for any
linear operator ๐ป on ๐ฝ,
โ๐
๐ป ๐บโฒ = ๐ท ๐ป ๐ ๐ท
That is, if ๐จ and ๐ฉ are the matrix representations
of ๐ป relative, respectively, to ๐บ and ๐บโฒ then
๐ฉ =
โ๐
๐ท
๐จ๐ท
76
๐ญ(๐, ๐) = (๐๐ + ๐๐ , ๐๐ โ ๐๐)
Find the matrix representation of ๐ญ relative to the bases
๐บ = {๐๐ , ๐๐ } = ๐, ๐ , ๐, ๐
and ๐บโฒ = {๐๐ , ๐๐ } = {(๐, ๐), (๐, ๐)}
๐ญ ๐๐ = ๐ญ
๐
๐
๐ + ๐ = ๐๐
๐
๐๐
๐
=
=๐
+๐
and
๐๐ + ๐๐ = โ๐๐
๐
โ๐๐
๐
๐
๐
๐ + ๐ = ๐๐
๐๐
๐
๐
=
=๐
+๐
and
๐๐ + ๐๐ = โ๐๐
โ๐๐
๐
๐
Solving the system ๐ฅ = 55 , ๐ฆ = โ44 .
Hence ๐ญ ๐๐ = ๐๐๐๐ โ ๐๐๐๐
๐ญ ๐๐ = ๐ญ
Solving the system ๐ฅ = 72 , ๐ฆ = โ58 .
Hence ๐ญ ๐๐ = ๐๐๐๐ โ ๐๐๐๐
๐ญ
๐บโฒ
๐๐
=
โ๐๐
๐๐
โ๐๐
๐ญ
๐
๐ ๐
=
๐ โ๐
77
๐
๐ท=
๐
๐
๐
โ๐
๐ธ=๐ท
๐ โ๐
=
โ๐ ๐
๐ทโ๐ ๐ญ ๐บ ๐ท
๐ โ๐ ๐ ๐
๐ ๐
=
โ๐ ๐
๐ โ๐ ๐ ๐
๐ โ๐
๐๐
๐๐
=
โ๐ ๐
โ๐๐ โ๐๐
๐๐ ๐๐
=
= ๐ญ
๐๐ โ๐๐
๐บโฒ
๐๐๐ญ ๐๐ ๐ญ ๐ = โ๐๐ โ ๐๐ = โ๐๐
๐ป๐๐๐๐ ๐๐ ๐ญ ๐ = ๐ โ ๐ = โ๐
๐๐๐ญ ๐๐ ๐ญ
= โ๐๐๐๐ + ๐๐๐๐ = โ๐๐
๐ป๐๐๐๐ ๐๐ ๐ญ ๐ = ๐๐ โ ๐๐ = โ๐
78
๐บโฒ
Similarity
๐จ ๐๐๐
๐ฉ square matrices
โ an invertible matrix ๐ท
๐ฉ = ๐ทโ๐ ๐จ๐ท
๐ฉโ๐จ
Similarity of matrices is an equivalence relation.
Two matrices represent the same
linear operator if and only if the
matrices are similar.
That is, all the matrix representations of a linear operator
๐ป form an equivalence class of similar matrices.
79
References
1. Lipschutz S. Schaum's Outline of Theory and
Problems of Linear Algebra 3rd Edition
(Schaum,2004)
2. Peter J. O. Shakiban C. Applied Linear Algebra 1st
Edition
3. Carl D. Meyer Matrix Analysis And Applied Linear
Algebra
80