Angular momentum

Download Report

Transcript Angular momentum

Orbital Angular Momentum
• In classical mechanics, conservation of angular momentum L is
sometimes treated by an effective (repulsive) potential
L2
2m r2
• Soon we will solve the 3D Schr. Eqn. The R equation will have an
angular momentum term which arises from the Theta equation’s
separation constant
• eigenvalues and eigenfunctions for this can be found by solving the
differential equation using series solutions
• but also can be solved algebraically. This starts by assuming L is
conserved (true if V(r))


dL
 0  [ H , L]  0
dt
P460 - angular momentum
1
Orbital Angular Momentum
• Look at the quantum mechanical angular momentum operator
(classically this “causes” a rotation about a given axis)
f
  
Lrp


p   i 
• look at 3 components
z
 cosf

 sin f
 0

Lx  ypz  zp y  i ( y
Ly  zp x  xpz  i ( z
Lz  xpy  ypx  i ( x
• operators do not necessarily commute
 sin f
0

0
1 
cosf
0

z

x

y
z
x
 y

y

z
)
)

x
)
Lx L y  L y Lx  [ Lx , L y ] 
  2 [( y
(z

z

x
i 2 ( y
z
x

x

z

y
)( z
)( y
x

y

z

x
x
z

y

z
)
)] 
)  iLz
P460 - angular momentum
2
Side note Polar Coordinates
• Write down angular momentum components in polar coordinates
(Supp 7-B on web,E&R App M)
Lx  i(sin f


Ly  i( cosf
 cot cosf



f
 cot sin f
)

f
)
Lz  i f
• and with some trig manipulations
L2   2 [ sin1  (sin   )  sin12  f 2 ]
• but same equations will be seen when solving angular part of S.E. and
so
L2zYlm  L2z lm m  ml2  2Ylm 
2
L2Ylm   2 [ sin1


(sin


)
ml2
sin 2 
]Ylm
 l (l  1) 2Ylm
• and know eigenvalues for L2 and Lz with spherical harmonics being
eigenfunctions
P460 - angular momentum
3
Commutation Relationships
• Look at all commutation relationships
[ Lx , L y ]  iLz
[ L y , Lz ]  iLx
[ Lz , Lx ]  iL y
[ L y , L y ]  [ Lx , Lx ]  [ Lz , Lz ]  0
o r [ Li , L j ]  i ijk Lk
 ijk  ten so r  0a n y in d ices sa m e
 1, a ll d ifferen t
• since they do not commute only one component of L can be an
eigenfunction (be diagonalized) at any given time
P460 - angular momentum
4
Commutation Relationships
• but there is another operator that can be simultaneously diagonalized
(Casimir operator)
L2  L2x  L2y  L2z
[ L2 , Lz ]  L2 Lz  Lz L2 
( L2x  L2y ) Lz  Lz ( L2x  L2y )  0
u sin g :
Lx ( Lx Lz )  Lx (  Ly  Lz Lx )
( Lz Lx ) Lx  ( Ly  Lx Lz ) Lx
Ly ( Ly Lz )   Ly (  Lx  Lz Ly )
( Lz Ly ) Ly   ( Lx  Ly Lz ) Ly
P460 - angular momentum
5
Group Algebra
• The commutation relations, and the recognition that there are two operators that can
both be diagonalized, allows the eigenvalues of angular momentum to be
determined algebraically
• similar to what was done for harmonic oscillator
• an example of a group theory application. Also shows how angular momentum
terms are combined
• the group theory results have applications beyond orbital angular momentum. Also
apply to particle spin (which can have 1/2 integer values)
• Concepts later applied to particle theory: SU(2), SU(3), U(1), SO(10), susy,
strings…..(usually continuous)…..and to solid state physics (often discrete)
• Sometimes group properties point to new physics (SU(2)-spin, SU(3)-gluons). But
sometimes not (nature doesn’t have any particles with that group’s properties)
P460 - angular momentum
6
Sidenote:Group Theory
• A very simplified introduction
• A set of objects form a group if a “combining” process can be defined
such that
1. If A,B are group members so is AB
2. The group contains the identity AI=IA=A
3. There is an inverse in the group A-1A=I
4. Group is associative (AB)C=A(BC)
• group not necessarily commutative
AB  BA
Abelian
AB  BA
non-Abelian
• Can often represent a group in many ways. A table, a matrix, a
definition of multiplication. They are then “isomorphic” or
“homomorphic”
P460 - angular momentum
7
Simple example
• Discrete group. Properties of group (its “arithmetic”) contained in
Table
1
a
b
c
1
1
a
b
c
a
a
b
c
1
b
c
b
c
c
1
1
a
a
b
• Can represent each term by a number, and group combination is
normal multiplication
11
a i
a  a  i  i  1  b
b  1
c  i
• or can represent by matrices and use normal matrix multiplication
1
1 
0

0
0
, a  
1
1


 1
 1
, b  
 0
0 


P460 - angular momentum
0 
 0
, c  
 1
 1


1

0

8
Continuous (Lie) Group:Rotations
• Consider the rotation of a vector
 
 
r' f r r


r '  Rr


| r ' || r | len g th sa m e




r' r f  r
n ea r id en tity
• R is an orthogonal matrix (length of vector doesn’t change). All 3x3
real orthogonal matrices form a group O(3). Has 3 parameters (i.e.
Euler angles)
R(f ) R( )  R( ) R(f )
• O(3) is non-Abelian
• assume angle change is small
 co sf

Rz (f )   sin f

0

 1

 R   fz
 f
y

 sin f
co s
0
 fz
1
fx
fy
 fx
1
0
f
0
1



0   f
1
0
0
1
0
1





 sm a ll a n g les


P460 - angular momentum
9
Rotations
• Also need a Unitary Transformation (doesn’t change “length”) for
how a function is changed to a new function by the rotation


 ( r ) ch a n g es to  ( r )




 ( Rr )   ( r ) o r  ( r )   ( R 1r )


U R (f ) ( r )   ( r )
u n ita ry



  (r  f  r )
• U is the unitary operator. Do a Taylor expansion








 ( r  f  r )   ( r )  (f  r )   ( r )





i
  (r ) 
(f  r )  p ( r )






  ( r )  f  ( i r  p ) ( r )


U R  1  i f  L
• the angular momentum operator is the “generator” of the infinitesimal
rotation
P460 - angular momentum
10
• For the Rotation group O(3) by inspection as:

1

R   fz
f
y

 fz
1
fx
fy
 fx
1


 U R  1


i


f

 L
• one gets a representation for angular momentum (notice none is
diagonal; will diagonalize later)
Lx
0

 i 0
0

0 
 0


 1 Ly  i 0
1
0 


0
1
Lz
0

 i 1
0

1
0
0
0
0
0
0
1

0
0

0

0
0

• satisfies Group Algebra
[ Li , L j ]  i ijk Lk
P460 - angular momentum
11
• Group Algebra
[ Li , L j ]  i ijk Lk
• Another group SU(2) also satisfies same Algebra. 2x2 Unitary
transformations (matrices) with det=1 (gives S=special). SU(n) has n21 parameters and so 3 parameters
U U  1
• Usually use Pauli spin matrices to represent. Note O(3) gives integer
solutions, SU(2) half-integer (and integer)
Lx 

2
Lz 

2
0

1

1

0

1
Ly 


0

2
0

i

 i

0 

0 

 1

P460 - angular momentum
12
Eigenvalues “Group Theory”
• Use the group algebra to determine the eigenvalues for the two
diagonalized operators Lz and L2 Already know the answer
• Have constraints from “geometry”. eigenvalues of L2 are positivedefinite. the “length” of the z-component can’t be greater than the
total (and since z is arbitrary, reverse also true)
• The X and Y components aren’t 0 (except if L=0) but can’t be
diagonalized and so ~indeterminate with a range of possible values
P460 - angular momentum
13
Eigenvalues “Group Theory”
• Define raising and lowering operators (ignore Plank’s constant for
now). “Raise” m-eigenvalue (Lz eigenvalue) while keeping leiganvalue fixed

x
y
L  L  iL
fo r S U ( 2 ) m a trices
L 
1
2
0
 
0

L 
0
 
1

1
2
0

1

1

0

1



0
i
2
0

i

 i

0 

0

1

0

0

1



0
i
2
0

i

 i

0 

P460 - angular momentum
14
Eigenvalues “Group Theory”
• operates on a 1x2 “vector” (varying m) raising or lowering it
L
L
L  
0

0

0
 
0

0
 
1

 
1

0

0

0

1  0 
1










0  1 
 0
L    0
0

1

0  0 
 0










0  1 
 0
1

 0
  
 
 0
1
  2 
1
  
 
s 
1
2
, ms 
s 
1
2
, ms
1
2
L    0
0

0

1  1 
 0










0  0 
 0
L     
0

1

P460 - angular momentum
0  1 
 0










0  0 
1
15
• Can also look at matrix representation for 3x3 orthogonal (real)
matrices
• Choose Z component to be diagonal gives choice of matrices
L  Lx  iLy
Lz
1

 0
0

0
0
0
0 

0  
 1

 1
 1
 
 
Lz m  m m  Lz  0   1 0 ,
 0
 0
 
 
 0
 0
 0
 0
 
 
 
 
Lz  1   0 1 ,
Lz  0   1 0 
 0
 0
 1
 1
 
 
 
 
P460 - angular momentum
16
• Can also look at matrix representation for 3x3 orthogonal (real)
matrices
• can write down L+- (need sqrt(2) to normalize) and then work out X
and Y components
L  Lx  iLy
1
L 
0

2 0
0

0
0
0

1
0

L 
0

2 1
0

0
0
1
0

0
0

Lz
1

 0
0

0
0
0
0 

0  
 1

1
 0
 0
1
 0
 0
 
 
 
 
 
 
L  0    0 , L  1    0 , L  0    1 
 0
 0
 0
 0
1
 0
 
 
 
 
 
 
1
 0
 0
 0
 0
 0
 
 
 
 
 
 
L  0    1 , L  1    0 , L  0    0 
 0
 0
 0
1
1
 0
 
 
 
 
 
 
P460 - angular momentum
17
• Can also look at matrix representation for 3x3 orthogonal (real)
matrices. Work out X and Y components
L  Lx  iLy
Lz
1

 0
0

Lx 
Ly 
1
2
i
2
0
0
0
0 

0  
 1

( L  L ) 
( L  L ) 
1
1
2
0

1
0

1
2
0

i
0

i
0
i
0
1
0

1
0

P460 - angular momentum
0 

 i
0 

18
• Can also look at matrix representation for 3x3 orthogonal (real)
matrices. Work out L2
 0 1 0


Lx 
L  Lx  iLy
Lz
1

 0
0

0
0
0
0 

0  
 1

Ly 
1
2
i
2
( L  L ) 
( L  L ) 
1
2
1
2
1
0

0

i
0

0
1
i
0
i
1
0

0 

 i
0 

L2  L2x  L2y  L2z 
0
2
0
1

0 
1

2

0
0

0
2
0
0

0   2  Id en tity[l ( l  1)  1 * 2]
2

1
2
1
2
 1

 0
1

 1
1


0   0
0
1 


1

0
1

0
2
0
0
0
0
0

0
1

T
L2

L
i
i Li
P460 - angular momentum
19
Eigenvalues
• Done in different ways (Gasior,Griffiths,Schiff)
• Start with two diagonalized operators Lz and L2.
lm LZ l m  m ll  mm
lm L2 l m  l 2 ll  mm
• where m and l are not yet known
• Define raising and lowering operators (in m) and easy to work out
some relations
L  Lx  iLy
[ Lz , L ]   L
L2  L L  L2z  Lz
[ L2 , L ]  0
[ L , L ]  2Lz
P460 - angular momentum
20
Eigenvalues
• Assume if g is eigenfunction of Lz and L2. ,L+g is also an
eigenfunction
L2 ( L g )  L ( L2 g )  l ( L g )
( L2 , L com m ute
)
Lz ( L g )  ( Lz L  L Lz ) g  L Lz g
  L g  L mg  ( m  1)( L g )
 m  
for operatorsL
• new eigenvalues (and see raises and lowers value)
P460 - angular momentum
21
Eigenvalues
• There must be a highest and lowest value as can’t have the zcomponent be greater than the total
L g H  0
L g L  0
• For highest state, let l be the maximum eigenvalue
Lz g H  lg H (re min der : L2 g H  lg H )
• can easily show
L2 g H  ( L L  L2z  Lz ) g H
 ( 0   2l 2   2l )  l   2l (l  1)
P460 - angular momentum
22
Eigenvalues
• There must be a highest and lowest value as can’t have the zcomponent be greater than the total
L g H  0
• repeat for the lowest state
L g L  0
L2 g L  ( L L  L2z  Lz ) g L
 ( 0   2l 2   2l )  l   2l (l  1)
Lz g L  l g L  l   2l (l  1)
equatel  l (l  1)  l (l  1)  l  l
• eigenvalues of Lz go from -l to l in integer steps (N steps)
N
 in t eger or ha lf  in t eger
2
l  0, 12 ,1, 32 .......(SU ( 2) on ly)
l 
m  l ,l  1,l  2.....l  1, l
( 2l  1 term s)
P460 - angular momentum
23
Raising and Lowering Operators
• can also (see Gasior,Schiff) determine eigenvalues by looking at
• and show
L l
m
 C ( l , m ) l
m 1
L l
m
 C ( l , m ) l
m 1
C (l , m)  
(l  m)(l  m  1)
C (l , m)  
(l  m)(l  m  1)
• note values when l=m and l=-m
• very useful when adding together angular momentums and building
up eigenfunctions. Gives Clebsch-Gordon coefficients
P460 - angular momentum
24
Eigenfunctions in spherical coordinates
• if l=integer can determine eigenfunctions
Ylm ( , f )   , f l , m
• knowing the forms of the operators in spherical coordinates
 Ylm
 mYlm
i f


 eif (
 i co t
)Ylm

f
LzYlm 
LYlm
• solve first
Ylm  F ( )eimf
• and insert this into the second for the highest m state (m=l)


 i co t
)Yll

f


 e if (
 i co t
) F ( ) e imf

f

 e if e ilf (
 i co t (il )) F ( )


 e i ( l 1)f (
 l co t ) F ( )

L l , l
 0  0  e if (
P460 - angular momentum
25
Eigenfunctions in spherical coordinates
• solving
e i ( l 1)f (

 l cot  ) F ( )  0

F ( )  (sin )l

Yll  Aeilf (sin )l
• gives
• then get other values of m (members of the multiplet) by using the
lowering operator


if
 i cot
L  e
(
LYll  
(l  m)(l  m  1)Yll 1

f
)
• will obtain Y eigenfunctions (spherical harmonics) also by solving the
associated Legendre equation
• note power of l: l=2 will have
sin2  ; cos sin  ; cos2 
P460 - angular momentum
26