Algebraic Aspects of Topological Quantum Computing

Download Report

Transcript Algebraic Aspects of Topological Quantum Computing

Algebraic Aspects of Topological
Quantum Computing
Eric Rowell
Indiana University
Collaborators
Z. Wang (IU and MS Research*)
M. Larsen (IU)
R. Stong (Rice)
* “Project Q” with M. Freedman, A. Kitaev, K. Walker and C. Nayak
What is a Quantum Computer?
Any system for computation based on
quantum mechanical phenomena
Create
Manipulate
Measure
Quantum Systems
Classical vs. Quantum
• Bits {0,1}
1
• Qubits:
V=C2
1
(superposition)
0
• Logical Operations
on {0,1}n
• Unitary Operations
on V X n
• Deterministic: output
unique
• Probabilistic: output
varies
(Uncertainty principle)
a
0
Anyons: 2D Electron Gas
1011 electrons/cm2
particle exchange
9 mK
fusion
defects=quasi-particles
10 Tesla
Topological Computation
Computation
Physics
output
measure
apply operators
braid
initialize
create
particles
Algebraic Characterization
Anyonic System
Top. Quantum Computer
Modular Categories
Toy Model: Rep(G)
•
Irreps: {V1=C, V2,…,Vk}
•
Sum V + W, product V X W, duals W*
•
Semisimple: every W= + miVi
•
Rep: Sn
EndG(V X n)
Braid Group Bn “Quantum Sn”
Generated by:
1
i
i+1
n
i=1,…,n-1
bi =
Multiplication is by concatenation:
=
Concept: Modular Category
deform
group G
Rep(G)
Sn action
Modular Category
Bn action
Axiomatic definition due to Turaev
Modular Category
• Simple objects {X0=C,X1,…XM-1}
+ Rep(G) properties
• Rep. Bn
End(X X n) (braid group action)
• Non-degeneracy: S-matrix invertible
Dictionary: MCs vs. TQCs
Simple objects Xi
Bn-action
Elementary particle
types
Operations (unitary)
X0 =C
Vacuum state
X0
Xi X Xi*
Creation
Constructions of MCs
quantum
group
g
Uqg
Lie algebra
Rep(Uqg)
semisimplify
F
|q|=1
Survey: (E.R. Contemp. Math.) (to appear)
Also,
quantum double
G
D(G)
Rep(D(G))
finite group
13
Physical Feasibility
Realizable TQC
Bn action Unitary
Uqg Unitarity results: (Wenzl 98), (Xu 98) & (E.R. 05)
Computational Power
Physically realizable {Ui} universal if all
{Ui} = { all unitaries }
TQC universal
F(Bn) dense in PkSU(k)
Results: in (Freedman, Larsen, Wang 02) and (Larsen, E.R., Wang 05)
Physical Hurdle: Realizable as Anyonic Systems?
Classify MCs
1-1
Recall: distinct particle types
Simple objects in MC
Conjecture (Z. Wang 03):
The set { MCs of rank M } is finite.
Classified for:
M=1, 2 (V. Ostrik), 3 and 4 (E.R., Stong, Wang)
True for finite groups! (Landau 1903)
Groethendieck Semiring
•
Assume X=X*. For a MC D:
Xi X Xj = + Nijk Xk
•
Semiring Gr(D):=(Ob(D), + , X )
•
Encoded in matrices (Ni)jk := Nijk
Modular Group
• Non-dengeneracy
S symmetric
• Compatibility
T diagonal
•
1
1
0
1
T,
0
-1
1
0
S
give a unitary projective rep. of SL(2,Z)
Our Approach
• Study Gr(D) and reps. of SL(2,Z)
• Ocneanu Rigidity:
Finite-to-one
MCs
{Ni}
• Verlinde Formula:
{Ni} determined by S-matrix
Some Number Theory
• Let pi(x) = det(Ni - xI)
and K = Split({pi},Q).
• Study Gal(K/Q): always abelian!
• Nijk integers, Sij algebraic, constraints
polynomials.
Sketch of Proof (M<5)
1. Show: 1
Gal(K/Q)
SM
2. Use Gal(K/Q) + constraints to determine
(S, {Ni})
3. For each S find T
rep. of SL(2,Z)
4. Find realizations.
Graphs of MCs
• Simple Xi
multigraph Gi :
Vertices labeled by 0,…,M-1
Nijk edges
j
k
• Question: What graphs possible?
Example (Lie type G2, q10=-1)
Rank 4 MC with fusion rules:
N111=N113=N123=N222=N233=N333=1;
N112=N122= N223=0
G1:
G2:
G 3:
0
1
0
2
2
0
3
1
3
3
2
1
Tensor
Decomposable!
Classification by Graphs
Theorem: (E.R., Stong, Wang)
Indecomposable, self-dual MCs of rank<5
are classified by:
Future Directions
• Classification of all MCs
• Prove Wang’s conjecture
• Images of Bn reps…
• Connections to: link/manifold invariants, Hopf
algebras, operator algebras…
Thanks!