MTH55_Lec-02_sec_1-6_Exponent_Rules
Download
Report
Transcript MTH55_Lec-02_sec_1-6_Exponent_Rules
Chabot Mathematics
§1.6 Exponent
Properties
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
Chabot College Mathematics
1
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Review §
1.5
MTH 55
Any QUESTIONS About
• §1.5 → (Word) Problem Solving
Any QUESTIONS About HomeWork
• §1.5 → HW-01
Chabot College Mathematics
2
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Exponent PRODUCT Rule
For any number a and any positive
integers m and n,
Exponent
a a a
m
n
m n
Base
In other Words:
To MULTIPLY powers with the
same base, keep the base and
ADD the exponents
Chabot College Mathematics
3
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Quick Test of Product Rule
a a a
m
Test
n
?
23
3 3 3
2
3
m n
3
5
3 3 9 27 243
2
3
3 3 3 3 3 3 3 3 3 3 3 9 27 243
5
Chabot College Mathematics
4
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Example Product Rule
Multiply and simplify each of the
following. (Here “simplify” means
express the product as one base to a
power whenever possible.)
a) x3 x5
c) (x + y)6(x + y)9
Chabot College Mathematics
5
b) 62 67 63
d) (w3z4)(w3z7)
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Example Product Rule
Solution a) x3 x5 = x3+5
Base is x
= x8
Adding exponents
Solution b) 62 67 63 = 62+7+3
Base is 6
= 612
Solution c) (x + y)6(x + y)9 = (x + y)6+9
Base is (x + y)
= (x + y)15
Solution d) (w3z4)(w3z7) = w3z4w3z7
3w 3z 4z 7
=
w
TWO Bases: w & z
= w6z11
Chabot College Mathematics
6
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Exponent QUOTIENT Rule
For any nonzero number a and any
positive integers m & m
mn
n for which m > n,
n
In other Words:
To DIVIDE powers with the same
base, SUBTRACT the exponent of
the denominator from the
exponent of the numerator
a
a
a
Chabot College Mathematics
7
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Quick Test of Quotient Rule
m
a
mn
a
n
a
6 ?
Test
5
6 4
2
5
5
4
5
64
5
555555
2
5
5
5
5
4
5
5555
6
Chabot College Mathematics
8
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Example Quotient Rule
Divide and simplify each of the
following. (Here “simplify” means
express the product as one base to a
power whenever possible.)
x
• a) 3
x
87
b) 3
8
(6 y )14
• c)
6
(6 y )
7 9
6
r
t
d)
4r 3 t
9
Chabot College Mathematics
9
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Example Quotient Rule
9
x
Solution a) 3 x 93
x
Base is x
Solution b)
Base is 8
Solution c)
Base is (6y)
x6
87
4
7 3
8
8
3
8
14
(6 y )
14 6
8
(6 y )
(6 y)
6
(6 y )
7 9
7
9
6
r
t
6
r
t
Solution d)
3
3
4 r t
4r t
TWO Bases: r & t
6 7 3 91 3 4 8
r t r t
4
2
Chabot College Mathematics
10
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
The Exponent Zero
For any number
a where a ≠ 0
a 1
0
In other Words:
Any nonzero number raised
to the 0 power is 1
• Remember the base can be
ANY Number
–0.00073, 19.19, −86, 1000000, anything
Chabot College Mathematics
11
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Example The Exponent Zero
Simplify:
c) (4w)0
Solutions
a) 12450
d) (−1)80
b) (−3)0
e) −80
a) 12450 = 1
b) (−3)0 = 1
c) (4w)0 = 1, for any w 0.
d) (−1)80 = (−1)1 = −1
e) −80 is read “the opposite of 80” and is
equivalent to (−1)80: −80 = (−1)80
= (−1)1 = −1
Chabot College Mathematics
12
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
The POWER Rule
For any number a and any whole
numbers m and n
a
n
m
a
mn
In other Words:
To RAISE a POWER to a POWER,
MULTIPLY the exponents and
leave the base unchanged
Chabot College Mathematics
13
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Quick Test of Power Rule
a
m n
a
7 7
?
3
2
23
mn
7
3
2 3
7 49 49 49 49
6
7 7 7 7 7 7 7 7 7 7 7 7 7
Test
7
Chabot College Mathematics
14
23
6
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Example Power Rule
Simplify:
a) (x3)4
Solution a)
(x3)4 = x34
= x12
Base is x
Solution b)
Base is 4
Chabot College Mathematics
15
b) (42)8
(42)8 = 428
= 416
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Raising a Product to a Power
For any numbers a and b and
any whole number n,
a b
n
a b
n
n
In other Words:
To RAISE A PRODUCT to a
POWER, RAISE Each Factor to
that POWER
Chabot College Mathematics
16
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Quick Test of Product to Power
n
n
n
a b
a b
2 11
3
Test
?
2 11
3
3
2 11 22 22 22 22 10648
3
3
2 11 8 1331 10648
Chabot College Mathematics
17
3
3
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Example Product to Power
Simplify: a) (3x)4
b) (−2x3)2
c) (a2b3)7(a4b5)
Solutions
a) (3x)4 = 34x4 = 81x4
b) (−2x3)2 = (−2)2(x3)2 = (−1)2(2)2(x3)2 = 4x6
c) (a2b3)7(a4b5) = (a2)7(b3)7a4b5
= a14b21a4b5
Multiplying exponents
= a18b26
Adding exponents
Chabot College Mathematics
18
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Raising a Quotient to a Power
n
For any real
numbers a and b,
b ≠ 0, and any
whole number n
In other Words:
To Raise a Quotient to a power,
raise BOTH the numerator &
denominator to the power
a
a
n
b
b
Chabot College Mathematics
19
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
n
Quick Test of Quotient to Power
n
a
a
n
b
b
3
n
Test
3
5 5
3
7 7
?
3
5 5
3
7 7
3
5 5 5 5 125 5 5 5 5
3
7 7 7 7 343 7 7 7 7
3
Chabot College Mathematics
20
3
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Example Quotient to a Power
Simplify: a)
w
4
3
3
b) 5
b
4
2a
c) 4
b
5
3
Solution a)
Solution b)
Solution c)
Chabot College Mathematics
21
3
3
w
w
w
3
64
4
4
4
4
3
3
5 5 4
(b )
b
2
2a
(2a 5 ) 2
4 4 2
(b )
b
5
81
81
54 20
b
b
22 (a5 )2 4a10
8
4 2
b
b
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
2
Negative Exponents
Integers as Negative Exponents
Chabot College Mathematics
22
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Negative Exponents
For any real number a that is
nonzero and any integer n
a
n
1
n
a
The numbers a−n and an are thus
RECIPROCALS of each other
Chabot College Mathematics
23
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Example Negative Exponents
Express using POSITIVE exponents,
and, if possible, simplify.
a) m–5 b) 5–2
c) (−4)−2 d) xy–1
SOLUTION
1
–5
a) m = 5
m
b) 5–2
Chabot College Mathematics
24
1
1
= 52 25
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Example Negative Exponents
Express using POSITIVE exponents,
and, if possible, simplify.
a) m–5 b) 5–2
c) (−4)−2 d) xy−1
SOLUTION
1
1
1
c) (−4)−2 = (4)2 (4)(4) 16
1
1 x
d)
= x 1 x
y y
y
• Remember PEMDAS
xy–1
Chabot College Mathematics
25
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
More Examples
Simplify. Do NOT use NEGATIVE
exponents in the answer.
5
3
a) w w
b) (x4)3
c) (3a2b4)3
5
a
d) 6
a
1
e) b 9
w 7
f)
6
z
Solution
a) w5 w3 w5 ( 3) w2
Chabot College Mathematics
26
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
More Examples
Solution
b) (x−4)−3 = x(−4)(−3) = x12
c) (3a2b−4)3 = 33(a2)3(b−4)3
6
27a
= 27 a6b−12 = 12
b
a 5
5 ( 6 )
1
a
a
a
d) a 6
1
( 9 )
9
b
b
e) 9
b
6
w7
1
1
z
7
6
w
z
7
f)
6
6
7
z
z
w
w
Chabot College Mathematics
27
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Factors & Negative Exponents
For any nonzero real numbers a
and b and any integers m and n
n
m
a
b
m
n
b
a
A factor can be moved to the other
side of the fraction bar if the sign of
the exponent is changed
Chabot College Mathematics
28
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Examples Flippers
Simplify
20 x 6
3 4
4y z
SOLUTION
We can move the negative factors to
the other side of the fraction bar if we
change the sign of each exponent.
20 x 6 5 z 4
3 6
3 4
4y z
y xz
Chabot College Mathematics
29
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Reciprocals & Negative Exponents
For any nonzero real numbers a
and b and any integer n
a
b
n
b
a
n
Any base to a power is equal to the
reciprocal of the base raised to the
opposite power
Chabot College Mathematics
30
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Examples Flippers
Simplify a
3b
4
2
2
SOLUTION a 3b
4
3
b
a
4
2
(3b) 2
4 2
(a )
2
2
2
3 b
9b
8 8
a
a
Chabot College Mathematics
31
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Summary – Exponent Properties
a1 = a
0 as an exponent
a0 = 1
Negative
Exponents
(flippers)
an
1
n,
a
a n bm a
n,
m
b
a
b
The Product Rule
a m a n a mn .
The Quotient Rule
am
a mn .
n
a
The Power Rule
(am)n = amn
The Product to
a Power Rule
(ab)n = anbn
The Quotient to
a Power Rule
Chabot College Mathematics
32
n
n
a a
n.
b b
n
b
a
n
This summary assumes that no
denominators are 0 and that 00 is not
considered. For any integers m and n
1 as an exponent
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
WhiteBoard Work
Problems From §1.6 Exercise Set
• 14, 24, 52, 70, 84, 92, 112, 130
Base &
Exponent →
Which is Which?
Chabot College Mathematics
33
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
All Done for Today
Astronomical
Unit
(AU)
Chabot College Mathematics
34
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt
Chabot Mathematics
Appendix
r s r s r s
2
2
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
–
Chabot College Mathematics
35
Bruce Mayer, PE
[email protected] • MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt