Transcript Document

EE201 Fundamentals of Electric
Circuits
by
Dr. Ibraheem Nasiruddin
WHEEL-1
1
Connect / Attend
Connect: Step in Question
Impose a Question: Recall from their experience what is required to construct a wall / building/
Lego game?
Attend:
• Rally share ABAB
• Listen individual Responses
Connect: to focus their thoughts
Giving students different geometric and configurations of fruits, objects, equipment, light
devices, duration of time and ask them for their observation
Attend:

Rally share ABAB

Listen individual Responses

Open discussion
Attend: conclude connect and attend activity and compile thoughts
 Ask them to list down their observation based on the discussion
 List down what is expected in this course
2
Image
UNITS, SYMBOLS AND OPERATIONS
(An overview and Introduction)
Mind Map
TECHNICAL TERMS
MATHEMATICAL
OPERATIONS
Units of measurements
FUNDAMENTALS
TA
Systems of units
Symbols
5
Physical Quantities
Basic Quantities
Basic Quantities
There is a coherent system of units of
measurement built around seven base
units. This system is known as the
International System of Units. It is also
known as the modern form of the metric
system
Temperature
Kelvin
Time
Second
Length
Meter
Mass
Kilogram
Luminous intensity Candela
Amount of substance Mole
Electric current
Ampere
K
S
m
Kg
cd
mol
A
Derived Quantities
m2
These quantities are derived
from the multiplication or
division of the seven basic
quantities
Few Examples:
Area
m2
Volume
m3
Velocity
ms-1
Acceleration
ms-2
The base quantities are also known as Fundamental Quantities.
The Derived units are formed from multiplication
and division of the seven base units and other
derived units and are many in number i.e.;
Some commonly used derived quantities are;
 Speed
 Work
 Force
 Electric Potential
 Power
 Frequency
 Angle
Named units derived from SI base units
Quantity
Symbol
Relationship
Dimension
symbol
Area
A
Width x lenght
m2
Volume
V
Width x length x height
m3
Velocity
u,v
Displacement/time
m/s or ms-1
Accelerate
a
Velocity/time
m/s2 or ms-2
Force
F
Mass x acceleration
Kgms-2 or N
Pressure
p
Force / Area
Pascal
Work
W
Force x distance
Joule or Nm
Power
P
Work/time
J/s or Watt
8
8
PREFIXES
Standard prefixes for the SI units of measure
Multiple
s
Prefix
deca-
hecto-
kilo-
mega-
giga-
tera-
peta-
exa-
zetta-
yotta-
Symbol
da
h
k
M
G
T
P
E
Z
Y
101
102
103
106
109
1012
1015
1018
1021
1024
Factor
100
SI Unit: meter, gram, ampere
Fractions
prefix
deci-
centi-
milli-
micro-
nano-
pico-
femto
-
atto-
zepto-
yocto-
Symbol
d
c
m
μ
n
p
f
a
z
y
10−1
10−2
10−12
10−15
10−18
10−21
10−24
Factor
100
10−3 10−6 10−9
CONVERSION UNITS
1 cm =
m
1m =
cm
1 m2 =
cm x
cm =
cm2
1 m3 =
cm x
cm x
cm =
cm3
To Solve Problems of unit conversion
1 cm = 0.01 m
1 m = 100 cm
1 m2 = 100 cm x 100 cm = 1002 cm2
1 m3 = 100 cm x 100 cm x 100 cm = 1003 cm3
10 km/h to m/s
10k m  1000m 
1h




h
 1k m  3600 s 
10  10m  1 
1


  2.78ms
 1  36s 
Meters into feet
 3.28 ft 
828m
  2716 ft
 1m 
Kilometers into miles
 1mi 
165km
  102mi
 1.62km 
Home Assignment-1
Solve Examples from each section
Submit solution of selected question
12
QUIZ-1
13
Significant Figures
• The digits that carry meaning contributing to its precision.
• Retain all figures during calculation.
• The leftmost non-zero digit is sometimes called the most
significant digit or the most significant figure.
• The rightmost digit of a decimal number is the least
significant digit or least significant figure.
• Numbers having three significant figures:
587
0.777
0.000999
121000
• Numbers having two significant figures:
16
8.9
0.12
0.0082
14
14
Rules for Significant Figures
1. Non zero integers always count as significant figures.
2. Zeros: There are three classes of zeros.
•
Leading zeros
•
Captive zeros
•
Trailing zeros
15
15
Rules for Significant Figures
a) Leading zeros
b)
c)
•
Zeros that precede all the non zeros digit
•
They do not count as significant figures
•
Ex: 0.000562 [3 s.f]
Captive zeros

Zeros between non zeros digits. They always count as
significant figures

Ex: 13.009 [5 s.f.]
Trailing zeros

Zeros at the end of numbers. They count as significant
figures only if the number contains a decimal point.

Ex: 200 [1 s.f.]
2.00 [3 s.f]
16
16
Mathematical Operation For
Significant Figures
Adding or Subtracting
Number of decimal
= the smallest number of decimal
places for final answer
places of any quantity in the
sum
•
Ex:
12.11 + 8.0 + 1.013 = 31.123
The final answer is 31.1 (1 decimal places)
17
17
Exercise 1
1.
Ohms law states that V = IR. If V = 3.75 V and I = 0.45 A,
calculate R and express your answer to the correct number
of significant figures.
2.
If the resultant force on an object of mass 260 kg is 5.20 x
102 N, use equation F = ma to find acceleration.
3.
If a car is traveling at a constant speed 72 km/h for a time
35.5 s, how far has the car traveled? (use distance = speed x
time)
18
18
Solutions
1.
2.
R = V/I = 3.75/0.45 = 8.3333333Ω
Due to the least s.f. (0.45 = 2 s.f.), thus the answer is 8.3 Ω
5.20 x102
a  F /m
 2ms 2
260
Due to the least s.f. (260 = 2 s.f. ), thus the answer is 2.0ms-2
3.
Change v=72km/h to m/s => 72km/3600s=20m/s
l  v  t  20m / s  35.5s  710m
Due to the least s.f. (72x103m/h = 2 s.f.), thus the answer is
0.71 km or 7.1x102m.
19
19
Home Assignment-2
Solve Examples from each section
Submit solution of selected question
20
QUIZ-2
21
Report writing
Ask them to do literature survey and write a report on:
1. database/charts of Symbols being used in real life.
2. database/charts of Units in use in different fields.
3. create chart/database of derived units from fundamental
units.
4. demonstrate any mathematical operation being used in real
life.
22