Transcript 2 ) ( x
3.6 Polynomial and
Rational Inequalities
Introduce infant mortality module.
Definition of a Polynomial
Inequality
A polynomial inequality is any inequality
that can be put in one of the forms
anxn + an-1xn-1 +…+ a2x2 + a1x + a0 < 0
anxn + an-1xn-1 +…+ a2x2 + a1x + a0 > 0
n
n-1
2
anx + an-1x +…+ a2x + a1x + a0 < 0
anxn + an-1xn-1 +…+ a2x2 + a1x + a0 > 0
where the coefficients are real numbers and
the degree is 2 or higher.
Procedure for Solving Polynomial Inequalities
• Express the inequality in the standard form (leading coefficient
positive set against zero.)
ex: anxn + an-1xn-1 +…+ a2x2 + a1x + a0 < 0
• Solve the equation anxn + an-1xn-1 +…+ a2x2 + a1x + a0=0.
The real solutions are the boundary points.
• Locate these boundary points on a number line, thereby
dividing the number line into test intervals.
• Choose one representative number within each test interval. If
substituting that value into the original inequality produces a
true statement, then all real numbers in the test interval belong
to the solution set. If substituting that value into the original
inequality produces a false statement, then no real numbers in
the test interval belong to the solution set.
• Write the solution set; the interval(s) that produced a true
statement.
Example
Solve and graph the solution set on a real number line:
2x2 – 3x > 2. (Don’t look at notes, no need to write.)
Solution
Step 1
Write the inequality in standard form. We can write by
subtracting 2 from both sides to get zero on the right.
2x2 – 3x – 2 > 2 – 2
2x2 – 3x – 2 > 0
Step 2
Solve the related quadratic (polynomial) equation. Replace the
inequality sign with an equal sign. Thus, we will solve.
2x2 – 3x – 2 =
(2x + 1)(x – 2) =
2x + 1 = 0 or x – 2 =
x = -1/2
or
x =
0
0
0
2
This is the related quadratic equation.
Factor.
Set each factor equal to 0.
Solve for x.
The boundary points are –1/2 and 2.
So far, we have taken similar steps to solve quadratic (polynomial) EQUATIONS.
Example cont.
Solve and graph the solution set on a real number line:
2x2 – 3x > 2.
Solution
Locate the boundary points on a number line. The
number line with the boundary points is shown as follows:
Step 3
-1/2
2
x
-5 -4 -3 -2 -1 0
1 2
3 4 5
The boundary points divide the number line into ________ test
intervals. Including the boundary points (because of the given
greater than or equal to sign), the intervals are:
Example cont.
Solve and graph the solution set on a real number line:
2x2 – 3x > 2.
Solution
Step 4
Take one representative number within each test interval and
substitute that number into the original inequality (belongs or not to the
solution set?).
Test Interval
(-ºº, -1/2]
Representative
Number
Substitute into
2x2 – 3x > 2
Conclusion
(-ºº, -1/2] ______
to the solution set.
[-1/2, 2]
[-1/2, 2] ________
to the solution set.
[2, ºº)
[2,
ºº) _________
to the solution set.
Example cont.
Solve and graph the solution set on a real number line:
2x2 – 3x > 2.
Solution
Step 5
The solution set are the intervals that produced a true
statement. Our analysis shows that the solution set is
(-ºº, -1/2] or [2, ºº).
The graph of the solution set on a number line is shown as follows:
-1/2
2
)
(
-5 -4 -3 -2 -1 0
1 2
x
3 4 5
Find the graphing error(s).
When you get tired of this method, let me know, there is a more
conceptual method that is much quicker (using “signs”.)
Ex: Graph the solutions of
4 x + 8 x3 + 2 x 2
Ex:Do p 378 # 44.
Ex: Finally find the equation of a graph that has no
solutions. (Use your calculator to check your
results.)
Text Example
(Don’t look at notes, not necessary to write. If
struggling, do p 378#48 first.)
Solve and graph the solution set: x + 1 2
x+3
Solution
Step 1
Express the inequality so that one side is zero and the other side
is a single quotient. We subtract 2 from both sides to obtain zero on the right.
x +1
2 This is the given inequality.
x+3
x +1
2 0 Subtract 2 from both sides, obtaining 0 on the right.
x+3
x + 1 2(x + 3)
0 The least common denominator is x + 3. Express 2
x+3
x+3
in terms of this denominator.
x + 1 2(x + 3)
0 Subtract rational expressions.
x+3
x + 1 2x 6
0 Apply the distributive property.
x+3
x 5
0 Simpli fy.
x+3
IMPORTANT: We MUST set = 0 first!
Text Example cont.
Solve and graph the solution set:
x +1
2
x+3
-x-5 < 0
x+3
Solution
Step 2
Find boundary points by setting the numerator and the
denominator equal to zero.
-x - 5
x = -5
= 0
x+3 = 0
x = -3
Set the numerator and denominator equal to 0.
These are the values that make the previous
quotient zero or undefined.
Solve for x.
The boundary points are -5 and -3. Because equality is included in the given
less-than-or-equal-to symbol, we include the value of x that causes the
quotient to be zero. Thus, -5 is included in the solution set. By contrast, we do
not include 1 in the solution set because -3 makes the denominator ________.
Text Example cont.
Solve and graph the solution set:
x +1
2
x+3
Step 3 Locate boundary points on a number line.
(In this case, -5 and –3. How many testing intervals now?
Name them.)
Step 4
Take one representative number within each test interval and
substitute that number into the original equality. (Fill in your notes.)
Test
Interval
(-ºº, -5]
[-5,-3)
(-3, ºº)
Representative
Number
Substitute into
x +1
2
x+3
Conclusion
(-ºº, -5] ____________
belong to the solution set.
[-5,-3) _____________
belong to the solution set.
(-3, ºº) ___________
belong to the solution set.
Text Example cont.
Solve and graph the solution set:
x +1
2
x+3
Step 5
The solution set are the intervals that produced a true
statement. Our analysis shows that the solution set is (-ºº, -5]
or (-3, ºº)
The Position Formula for a Free-Falling
Object Near Earth’s Surface
An object that is falling or vertically projected into the air
has its height in feet above the ground given by
s = -16 t 2 + v0 t + s0
where s is the height in feet, v0 is the original velocity
(initial velocity) of the object in feet per second, t is the
time that the object is in motion in seconds, and s0 is the
original height (initial height) of the object in feet.
Q: What shape would this have if we were to graph it?
What variables would go on each axis? What does this
mean physically?
Example
s = -16 t 2 + v0 t + s0
An object is propelled straight up from ground level with an initial velocity of
80 fps. Its height at time t is described by __________________ where the
height, s, is measured in feet and the time, t, is measured in seconds. In which
time interval will the object be more than 64 feet above the ground? (What is
s0 ?) How does this graph look? Put it in your calculator to check your guess.
Q: This is the inequality implied by the
problem’s question. We must find t.
Solution
Now what? Work in pairs to solve this step by
step. Be able to verbalize it.
.
t=
t=
Solve for t. The boundary points are ___ and ___.
Find the intervals.
Test. Draw conclusions to answer this real world
problem.