Binary Representation

Download Report

Transcript Binary Representation

Binary Representation
Major: All Engineering Majors
Authors: Autar Kaw, Matthew Emmons
http://numericalmethods.eng.usf.edu
Transforming Numerical Methods Education for STEM
Undergraduates
7/18/2015
http://numericalmethods.eng.usf.edu
1
Binary Representation
http://numericalmethods.eng.usf.edu
How a Decimal Number is
Represented
1
2
257.76  2 10  5 10  7 10  7 10  6 10
2
3
1
0
http://numericalmethods.eng.usf.edu
Base 2
 (1 23  0  2 2  1 21  1 20 )


(1011.0011) 2  
1
2
3
4 

(
0

2

0

2

1

2

1

2
) 10

 11.1875
4
http://numericalmethods.eng.usf.edu
Convert Base 10 Integer to
binary representation
Table 1 Converting a base-10 integer to binary representation.
Quotient
11/2
5
5/2
2
2/2
1
1/2
0
Remainder
1  a0
1  a1
0  a2
1  a3
Hence
(11)10  (a3 a2 a1a0 ) 2
 (1011) 2
5
http://numericalmethods.eng.usf.edu
Start
Input (N)10
Integer N to be
converted to binary
format
i=0
Divide N by 2 to get
quotient Q & remainder R
i=i+1,N=Q
ai = R
No
Is Q = 0?
Yes
n=i
(N)10 = (an. . .a0)2
STOP
6
http://numericalmethods.eng.usf.edu
Fractional Decimal Number
to Binary
Table 2. Converting a base-10 fraction to binary representation.
0.1875  2
0.375  2
0.75  2
0 .5  2
Number
Number after
decimal
0.375
0.75
1.5
1.0
0.375
0.75
0.5
0.0
Number before
decimal
0  a1
0  a 2
1  a3
1  a4
Hence
(0.1875)10  (a1a 2a3a 4 )2
 (0.0011)2
7
http://numericalmethods.eng.usf.edu
Start
Fraction
F
to
be
converted to binary
format
Input (F)10
i  1
Multiply F by 2 to get
number before decimal,
S and after decimal, T
i  i  1, F  T
ai = R
No
Is T =0?
Yes
n=i
(F)10 = (a-1. . .a-n)2
STOP
8
http://numericalmethods.eng.usf.edu
Decimal Number to Binary
11.187510  
?.?
2
Since
(11)10  (1011) 2
and
(0.1875)10  (0.0011) 2
we have
(11.1875)10  (1011.0011) 2
9
http://numericalmethods.eng.usf.edu
All Fractional Decimal Numbers
Cannot be Represented Exactly
Table 3. Converting a base-10 fraction to approximate binary representation.
Number
0 .3  2
0 .6  2
0 .2  2
0 .4  2
0 .8  2
0.6
1.2
0.4
0.8
1.6
Number
after
decimal
0.6
0.2
0.4
0.8
0.6
Number
before
Decimal
0  a1
1  a2
0  a3
0  a 4
1  a5
(0.3)10  (a1a2a3a4a5 )2  (0.01001)2  0.28125
10
http://numericalmethods.eng.usf.edu
Another Way to Look at
Conversion
Convert 11.187510 to base 2
1110  23  3
 2  2 1
3
1
2 2 2
3
1
0
 1 23  0  2 2  1 21  1 20
 10112
11
http://numericalmethods.eng.usf.edu
0.187510  2
3
 0.0625
 2 3  2  4
1
2
3
 0  2  0  2  1 2  1 2
 .00112
4
11.187510  1011.00112
12
http://numericalmethods.eng.usf.edu
Additional Resources
For all resources on this topic such as digital audiovisual
lectures, primers, textbook chapters, multiple-choice
tests, worksheets in MATLAB, MATHEMATICA, MathCad
and MAPLE, blogs, related physical problems, please
visit
http://numericalmethods.eng.usf.edu/topics/binary_repr
esentation.html
THE END
http://numericalmethods.eng.usf.edu