Bose-Einstein Statistics - AGH University of Science and
Download
Report
Transcript Bose-Einstein Statistics - AGH University of Science and
Bose-Einstein Statistics
Applies to a weakly-interacting gas of
indistinguishable Bosons with:
Fixed N = ini
Fixed U = iEini
No Pauli Exclusion Principle: ni 0, unlimited
Each group i has:
gi states, gi-1 possible subgroups, ni to be shared
between them
g n 1!
t
Number of combination to do this is:
n ! g 1!
So number of microstates in distribution {n } states:
i
i
i
i
i
i
g n 1!
t ({n })
n ! g 1!
i
j
i
i
i
i
RWL Jones, Lancaster University
Bose-Einstein Statistics
Classical limit:
gi ni 1! g n 1g n 2g
i
i
i
i
i
gi 1!
n factors
i
g i if : ni g i
ni
ni
gi
t MB ({ n j })
ni !
i
Bose-Einstein:
Large numbers: gi, ni
t ({n })
j
g n !
i
i
i
n !g !
i
i
RWL Jones, Lancaster University
Bose-Einstein Distribution
We use the same technique as for Boltzmann,
maximize ln t({ni}) : d ln t ({ni}) = 0
Add to this the constraints:
dN = 0 idni = 0
dU = 0 i Ei dni = 0
:(ii)
:(iii)
Once again, add the (i)+(ii)+(iii)
(Lagrange)
n
1
F
g exp 1
i
i
i
i
Thermodymanics gives =-1/kT
RWL Jones, Lancaster University
Open and Closed Systems
given by N=igiF(Ei) for a closed system of phoney
bosons (e.g. ground state He4 atom (2p2n2e, each in
up-down spin combinations)
= -/kT
F
BE
1
exp 1
kT
Elementary bosons (not made up of fermions) do not
conserve N – examples are photons and phonons
These correspond to an open system – no fixed n
no no
F
BE
exp
1
kT
1
RWL Jones, Lancaster University
Black Body Radiation
Spectral Energy density is the energy in a photon gas
between E and E+dE = U(E) dE
U
u
()
d
0
Energy in photon gas for photons with frequencies
between and + d= u() d= h F(E) g(E) dE
= h F() g() d
(from week 1homework) = h F() V 82/c3 d
V
2
h
u
(
)
d
d
c
exp(
h
/
kT
)
1
3
3
2
Planck Radiation Formula
RWL Jones, Lancaster University
Black Body Radiation
u()
u()
h./kT~3
hc./kT~5
In terms of wavelength (= c/)
V
8
hc
1
u
(
)
exp(
hc
/
kT
)
1
2
5
RWL Jones, Lancaster University
Black Body Radiation
max hc/5kT
T = Tsun 6000K max 480 nm (yellow light)
T = Troom 300K max 10 m (Infra-red)
T = Tuniverse 3K max 1 mm (microwave background)
Total Energy of Photon Gas:
8
kT
U
u
(
)
d
V
T
15
hc
5
0
4
4
3
RWL Jones, Lancaster University
Radiation Pressure
For massive particles:
P = (2/3) (U/V) (because E ~ k2 and and k ~ V1/3)
For massless particles E ~ K
P = (1/3) (U/V)
RWL Jones, Lancaster University
Classical Limit
In Maxwell-Boltzmann limit, F(E)<<1,
so exp( (E-)/(kBT) ) >> 1
So FMB(E) = exp( -(E-)/(kBT) )
= exp( /(kBT) ) exp( -(E/(kBT) )
= (N/Z) exp( -(E/(kBT) )
So N/Z = exp( /(kBT) )
So chemical potential = kBT ln(N/Z)
RWL Jones, Lancaster University