11.2 Geometric Representations of Complex Numbers
Download
Report
Transcript 11.2 Geometric Representations of Complex Numbers
11.2 Geometric
Representations
of Complex
Numbers
Graphing Complex Numbers
• In Algebra 2, you learned how to graph a
complex number…
Imaginary
Part
Real
Part
Graphing Complex Numbers
• Graph the point 5 - 7i
A point representing a complex number
can be written 2 different ways:
1.) Rectangular Form:
z = a + bi
2.) Polar Form
z = r cos() + r sin()i
Polar form is often simplified by factoring out the radius.
z = r cis()
Covert each complex number to polar form:
a.)
3i
b.)
4 2 4 2i
c .)
39 80 i
Covert each complex number to rectangular form:
3
a.) 2 cis
2
b.)
c .)
5
cis
6
2
1
2
5cis
3
Products of Complex Numbers
Back in Algebra 2, you learned how to multiply
complex numbers…
1 2 i 2 3 i
Foil
This
2 3i 4 i 6 i
2 7i 6
4 7i
2 5 i 3 4 i
2
Products of Complex Numbers in Polar Form
Let’s multiply 2 complex numbers:
r
cis
number #1 r cis
number # 2 s cis
s cis
r cos
i sin
s cos
i sin
rs cos i sin cos i sin
rs cos cos i cos sin i sin cos i sin sin
2
Reorder the terms…
Products of Complex Numbers in Polar Form
rs cos cos i cos sin i sin cos i sin sin
2
Reorder the terms…
rs cos cos i sin sin i cos sin i sin cos
2
rs cos cos sin sin i cos sin sin cos
rs cos i sin
Products of Complex Numbers in Polar Form
r
cis
s cis
rs cos i sin
Translation: When you multiply complex numbers in polar
form, you simply multiply the radii & add the angles.
Multiply using the polar form of the
complex number:
z1 1 2 i
z 2 2 3i
z 1 z 2
Multiply using the polar form of the
complex number:
z 1 5 cis
6
z 2 7 cis
2
z 1 z 2
Multiply using the polar form of the
complex number:
z1 1
3i
z 2 2 2i
z 1 z 2