ECE 352 Electronics II
Download
Report
Transcript ECE 352 Electronics II
Ch 10 MOSFETs and MOS Digital Circuits
* Examine MOSFET use in inverters
* Inverter = two transistors in series
Input to gate of driver (at least)
Second transistor acts as load
Output off connection between
transistors
* NMOS Inverters
Enhancement driver, resistor load
Enhancement driver and load
Enhancement driver, depletion load
* CMOS Inverter
N channel driver, P channel load
Load
Driver
Vo
Vi
ECES 352 Winter 2007
* Analyze to find inverter performance:
* Voltage transfer characteristic
*
Noise margins
*
Power dissipation
*
Switching speed
Ch 10 MOS Digital
1
MOSFETs and MOS Digital Circuits
* Inverters combined in series
and parallel to form digital
circuits such as AND’s,
NAND’s, OR’s, NOR’s, flipflops, etc.
* Understanding inverter
operation is basic to
understanding and describing
digital circuit operation
* Also important in modifying
their design to enhance their
performance, e.g. speed,
power dissipation,
susceptibility to noise, and
fan-out capability
ECES 352 Winter 2007
Ch 10 MOS Digital
2
N-Channel Enhancement MOSFET
* Positive voltage on gate attracts
electrons to surface to form
“induced channel of electrons”.
* Channel forms path for electron
flow between source and drain.
* Without channel, have back-to-back
diodes in series between source and
drain so negligibly small current
ECES 352 Winter 2007
Ch 10 MOS Digital
3
N-Channel Enhancement MOSFET
* Basics of device operation
iDS
Saturation mode operation
(large VDS)
VTh = threshold voltage
No channel of electrons for
vGS < VTh
No current for vGS < VTh
VTh > 0 for enhancement
mode n-channel MOSFET
iDS
Channel formation
for vGS > VTh
Increasing vGS
Increasing vGS
VTh
ECES 352 Winter 2007
vDS
vGS
Ch 10 MOS Digital
4
N-Channel Enhancement MOSFET
iDS
vDS sat = v GS – VTh
Constant vGS
curve
ECES 352 Winter 2007
Ch 10 MOS Digital
vDS
5
N-Channel Enhancement MOSFET
* Cutoff region (vGS < VTh)
iDS
iD 0
* Triode region (vDS < vDSsat)
2
i
K
[
2
v
V
v
v
]
D
GS
Th
DS
DS
* Triode-saturation boundary at
vDS = vDSsat = vGS - VTh OR
where vGS - vDS = VTh
* Saturation region (vDS > vDSsat)
vDS sat = v GS – VTh
vGS
2
iDK
V
Th
where
K
1
W
nCox
2
L
Cox
vDS
ox
tox
n electron
mobility
in thechannel
incm2 /V sec
vn
electronelocity
v
E electric
fieldstrength
W widthof thechannel
(perpendic
ular to
current
flow)
L lengthof thechannel
(alongthecurrent
flow)
ECES 352 Winter 2007
Ch 10 MOS Digital
6
N-Channel Depletion MOSFET
* Basics of device operation
N-type
channel
Saturation mode
operation
iDS
VTh < 0 for depletion mode
n-channel MOSFET
VTh = threshold voltage
Channel exists even when no
bias is applied to the gate,
i.e for vGS = 0.
Drain current can flow for
vGS = 0 and for any vGS > VTh.
No channel of electrons for
vGS < VTh
No drain current for vGS < VTh
vGS
VTh
ECES 352 Winter 2007
Ch 10 MOS Digital
7
N-Channel Depletion MOSFET
iDS
* Cutoff region (vGS < VTh)
iD 0
* Triode region (vDS < vDSsat)
2
i
K
[
2
v
V
v
v
]
D
GS
Th
DS
DS
* Triode-saturation boundary at
vDS = vDSsat = vGS - VTh OR
where vGS - vDS = VTh
* Saturation region (vDS > vDSsat)
vDS sat = v GS – VTh
vGS
2
iDK
V
Th
vGS= 0
1
W
K nCox
2
L
Cutoff
vDS
* Only difference from enhancement mode
device is that the gate voltage may be
negative. But vGS must still be larger
than the threshold voltage for the device
to be on!
ECES 352 Winter 2007
Cox ox
tox
2
n electron
mobility
in the
channel
incm
/Vsec
v
electron
elocity
v
n
E electric
field
strength
Wwidth
ofthe
channel
(perpendic
ular current
to flow
Llength
ofthe
channel
(along
the
current
flow)
Ch 10 MOS Digital
8
N-Channel Enhancement vs Depletion MOSFET
Enhancement MOSFET (VTh > 0 )
* Cutoff region (vGS < VTh)
iD 0
iDS
* Triode region (vDS < vDSsat)
2
i
K
[
2
v
V
v
v
]
D
GS
Th
DS
DS
vDS
* Triode-saturation boundary at
vDS = vDSsat = vGS - VThOR
where vGS - vDS = VTh
* Saturation region (vDS > vDSsat)
2
vGS
iDK
V
Th
vGS < VTh
iDS
Depletion MOSFET (VTh < 0 )
1
W
K nCox
2
L
Cox ox
tox
2
n electron
mobility
in the
channel
incm
/Vsec
v
electron
elocity
v
n
E electric
field
strength
Wwidth
ofthe
channel
(perpendic
ular current
to flow
Llength
ofthe
channel
(along
the
current
flow)
vGS = 0
vDS
ECES 352 Winter 2007
Ch 10 MOS Digital
9
NMOS Inverter (E-MOSFET + Resistor Load)
* Analyze to find inverter
performance: voltage transfer
characteristic, noise margins, power
dissipation and switching speed
* Transistor characteristics (driver)
VDD5 V
RD 2K
+
+
vi
_
vo
_
VTh 1.0 V (enhancement mode)
Channel width W 5m, Channel length L 1m
Electron mobility n 700 cm 2 / V sec
Gate oxide thicknes s tox 20 nm 2 x10 6 cm
Gate oxide capacitance
Cox ox / tox
Cox (3.9 x8.85 x10 14 F / cm) /( 2 x10 6 cm)
1.77 x10 7 F / cm 2
1
W
nCox
2
L
1
5 m
(700 cm 2 / V sec)(1.77 x10 7 F / cm 2 )(
)
2
1m
K
0.3 mA / V 2
ECES 352 Winter 2007
Ch 10 MOS Digital
10
NMOS Inverter - Load Line
* Device operation in inverter
VDD5 V
V
1.0V
Th
RD 2K
K0.3mA
/V2
Load line comes from connections of
transistor in the circuit
v
V
R
v
o
DD
Di
D
DSor
V v
iD DD
DS
R
R
D
D
+
vo = v DS
_
iDS
VDD/RD
=5V/2K
=2.5 mA
D
Increasing vGS
Load line
C
.
A
vDS
For a given vGS, e.g. 3V (=VTh+2V),
transistor’s operating point is where
load line crosses vGS = 3V transistor
characteristic.
Transistor must operate on load line
as gate voltage changes.
At points A, the transistor is in
cutoff mode (small vGS).
Between points A and C (larger vGS),
transistor is in saturation mode.
Between points C and D (even larger
vGS), transistor is in triode mode.
VDD
ECES 352 Winter 2007
Ch 10 MOS Digital
11
NMOS Inverter (E-MOSFET + Resistor Load)
VDD5 V
V
1.0V
Th
RD 2K
K0.3mA
/V2
* Voltage transfer characteristic
Vo versus Vi
* Region I (A to B)
0 < Vi < VTh
iD = 0 since transistor is
off, i.e. in cutoff.
+
+
vi
vo
_
_
vo
iDS
5V
A
B
I
A to B
.
vDS
0
0
ECES 352 Winter 2007
VTh=1V
Ch 10 MOS Digital
5V
12
vi
NMOS Inverter (E-MOSFET + Resistor Load)
* Region II (B to C)
VDD5 V
V
1.0V
Th
RD 2K
K0.3mA
/V2
+
+
vi
Vi > VTh and iD > 0 since transistor is on.
iD is increasing as Vi = vGS increases
Transistor is operating in saturation
mode since vDS > vDSsat
vGSV
20.3mA
v1
2iR
iDK
V
Th
2 i
V
mA
2
v
V
R
iR5
V2
K
0
.3 2v
1
V
o
DD
D
i
V
vo
_
_
2
v
1
V
i
5
V0
.6
V
vo
iDS
vDSsat
5V
A
B
I
C
.
A to B
C
vDS
0
0
ECES 352 Winter 2007
II
VTh =1V
Ch 10 MOS Digital
5V
13
vi
NMOS Inverter (E-MOSFET + Resistor Load)
*
VDD5 V
V
1.0V
Th
RD 2K
K0.3mA
/V
vo vDSvDSsat
vGSVThvi VTh
+
+
vi
*
2
Where is point C and what are the corresponding
values of Vi and Vo?
At C, transistor is operating at the edge of the
saturation mode where
vo
_
_
Socombining
with
Load
Line
equation
vo VDDRDiR VDDKvi VTh RD weget
2
vi VThVDDKvi VTh RD
2
Solving
forvi we
get
-1 14KR
VDD 1 14(0.3mA
/V)2K(5V)
D
v
i(at C)
2KR
2(0.3mA
/V)2K
D
13.6
2.2V or 3.8V(not
possible
) and
sovi(at C)
2.2V
1.2
Then
v0(at C)
vi(at C)
VTh2.2V1.0V1.2V
iDS
vo
A
5V
C
.
ECES 352 Winter 2007
B
I
A to B
vDS
1.2V
0
II
C
0
VTh 2.2V
Ch 10 MOS Digital
14
5V
vi
NMOS Inverter (E-MOSFET + Resistor Load)
V
1.0V
Th
VDD5 V
*
K0.3mA
/V2
RD 2K
2
vDSvDS
vovo2] and
iDK
[2vGSV
]K
[2vi V
Th
Th
V v
iDiR DD o socombining
and
rearrangin
g we
get
R
D
+
+
vi
Region III (C to D)
Vi > VTh and iD > 0 since transistor is still on.
Transistor is operating in triode mode so
vo
_
2
1VDD0
Kv
vo2Kvi V
o
Th
R
D R
D
_
1/2
2
1
4KV
DD
1
2
K
v
V
i
Th
2
K
v
V
i
Th
R
R
D
D
R
D
vo
2K
2K
iDS
vo
B
A
5V
D
I
C
II
A to B
.
vDS
C
1.2V
0.95V
0
ECES 352 Winter 2007
III
VTh
Ch 10 MOS Digital
At D, vi = 5V and
vo= 0.95V or
8.7V (not possible).
D
2.2V
15
5V
vi
Noise Margins for NMOS Inverter
(E-MOSFET + Resistor Load)
* Noise margin for low state
high
high
low
vo
VOH = 5V
NML= VIL - VOL
= 1.0 V- 0.95 V = 0.05 V
VOL=
0.95V
Vi =VOL
= 0.95V
VIL=VTh
= 1.0V
5V
vi
Input signal size with noise
that causes problems..
Normal low input signal size without noise.
ECES 352 Winter 2007
Ch 10 MOS Digital
Measures degree of
inverter sensitivity to noise
for the low state, i.e. how
large an input noise signal
causes problems at output.
Assumes identical inverter
providing input signal
Noise Margin =
NML = VIL - VOL where
VOL = output voltage
when input set to VOH
VIL = maximum input
voltage recognized as
a low input
For this inverter design,
NML is very low (0.05V) !
Can change by changing R
or VTh or transistor’s K.
16
Noise Margins for NMOS Inverter
(E-MOSFET + Resistor Load)
* Noise margin for high state
low
low
high
vo
VOH = 5V
NMH = VOH - VIH
Slope
= -1
VOL= 0.95V
5V
Input signal size with noise
that causes problems.
V
IH
Normal high input signal size without noise.
ECES 352 Winter 2007
vi
Measures degree of
inverter sensitivity to noise
for the high state, i.e. how
large a negative input
noise signal causes problems
at the output.
Assumes identical inverter
providing input signal
Noise Margin =
NMH = VOH - VIH where
VOH = output high
voltage when input set
to VOL
VIH = minimum input
voltage recognized as
a high input
Can change by changing R
or VTh or transistor’s K.
Vi=VOH
Ch 10 MOS Digital
How do we find VIH?
17
Noise Margins for NMOS Inverter
(E-MOSFET + Resistor Load)
* Noise margin for high state
low
low
high
vo
VOH = 5V
NMH = VOH - VIH
= 5 V- 1.83 V
= 3.17 V
Slope
= -1
Noise Margin = NMH = VOH - VIH
where
VOH = output high voltage
when input set to VOL
VIH = minimum input voltage
recognized as a high input
Can find VIH by using expression
derived for region II
vo VDDRDiR VDDRDKvi VTh2
dv
0
2RDKvi VTh1 so
dv
i
1
vi VIH VTh
2RDK
VOL=
0.95V
1
1V
1.83
V
2(2K)(0.3mA
/V)
C
2.2V
5V
VIH
II
ECES 352 Winter 2007
III
Vi=VOH
vi
This VIH is less than 2.2V where
FET enters region III, so our
guess that device at VIH is in
region II is okay.
Ch 10 MOS Digital
18
Noise Margins for NMOS Inverter
(E-MOSFET + Resistor Load)
* Alternate analysis for Noise margin
for high state
low
low
high
Noise Margin = NMH = VOH - VIH
Can find VIH by using expression
derived for region III
2
vi VTh 1 VDD0
Kv
o v
o2K
RD RD
vo
Ifwepick
vo 1V, wegetforvi
VOH = 5V
1 5
0.3(1)2 2(0.3)(vi 1) 0
2 2
sovi 4.5VVIH
NMH = VOH - VIH
= 5 V- 4.5 V
= 0.5 V
VO= 1.0 V
C
VOL= 0.95V
2.2V
5V
VIH
II
ECES 352 Winter 2007
III
vi
The noise margin for the high state
NMH now becomes smaller.
NMH = VOH – VIH = 5 V- 4.5 V = 0.5 V
This is smaller than the previously
determined value, but is still a
factor of ten larger than that for
the low state NML = 0.05 V.
VOH
Ch 10 MOS Digital
19
Power Dissipation for NMOS Inverter
(E-MOSFET + Resistor Load)
*
V
1.0V
Th
VDD5 V
K0.3mA
/V2
RD 2K
*
Input low, output high.
Transistor is off, iD = 0.
Power dissipation PH = 0
Input high (5 V), output low (0.95 V).
vovDS
(D
)0.95
V
5V0.95
V
iD
2.0mA
2K
P
(2.0mA
)10
mW
L5V
+
+
vi
vo
_
*
_
Average Static Power Dissipation P
10
mW
1
P
P
P
5
mW
HL
2
2
iDS
vo
A
B
5V
D
C
.
I
A to B
vDS
III
C
1.2V
0.95V
0
ECES 352 Winter 2007
II
VTh
Ch 10 MOS Digital
D
2.2V
20
5V
vi
Propagation Delays and Switching Times
for NMOS Inverters
+
+
vi
_
vo
_
vi
t
vo
ECES 352 Winter 2007
* Previously considered static
characteristics of inverters, e.g.
Voltage transfer characteristic.
* Switching performance is also
of interest.
* Finite switching times are due
to the capacitance load on the
output and RC charging and
discharging times.
* Capacitance load comes from:
1) gate capacitance of
subsequent inverters to which
the output is connected and
2) capacitance of interconnect
wires to inputs of other gates.
* Propagation delays
tPHL = output high to low
tPLH = output low to high
tP = (1/2)(tPHL+ tPLH) )
defines the speed of the
inverter.
t
Ch 10 MOS Digital
21
Propagation Delays and Switching Times
for NMOS Inverters
Load
Resistor
iR
+
+
vi=VOL
_
RD 2K
iC
vo
iD= 0
_
C
* Output goes from Low to High
Drive transistor turns off
Load resistor provides current to
charge up C.
V v
dv
iC C o iR DD o
dt
RD
Driver
VTh1 1.0 V
vot
W1 5m, L1 1m
K1 3.1x104
A
V2
OL
vo(t) VDDVDDVOLet/RDC
vo
tPLH = time to charge to the midpoint
½(VOH+VOL) = 1/2(5V + 0.95V) = 3.0V
etPLH/RDC3.0V
vo(tPLH
)V
V
V
DD
DD
OL
For
C10pF
,
VDD
3V
VOL=
0.95V
t
dv
1
o
VDDvo RDCdt
V
0
tPLH
t
ECES 352 Winter 2007
V
V
DD
OL
tPLH
R
C
ln
D
V 3.0
DD V
V0.95
V
5
2K
(10
pF
) ln
14nsec
V3.0
V
5
Ch 10 MOS Digital
22
Propagation Delays and Switching Times
for NMOS Inverters
Load
Resistor
iR
+
+
vi =VOH
_
RD 2K
iC
C
vo
iD
C
VTh1 1.0 V
K1 3.1x104
A
V2
D
RD
2
t
dv
1
o
dt
V
v
i
R
R
C
D D
D 0
VOH DD o
vo(t)VDDiDRDVDDiDRDVOHet/RDC
tPHL = time to discharge from
VOH
= VDD to
(VOH+VOL) = 1/2(5V + 0.95V) = 3.0V
V
V
et /RC3
v
(
tPHL
)
iD
R
iD
R
V
.0
V
o
DD
D
DD
D
OH
PHL
D
For
C
10
pF
,
3V
VOL=
0.95V
D
vot
4A
2
3
.
1
x
10
(
5
V
1
V
)
5
mA
2
V
VDD
R
2
2
2
i
K
v
V
K
V
V
D
i
Th
OH
Th
vo
dt
iD Kvi VTh KVOHVTh a constant
!
W1 5m, L1 1m
_
Driver
* Output goes from High to Low
Drive transistor turns on v = V
i
OH
But load resistor continues to
provide some current so
V v
dv
i C o i i DD o i
tPHL
t
ECES 352 Winter 2007
V
idR
V
DD
D
OH
tPHL
R
C
ln
D
V
idR
3
.0
V
DD
D
5
V
5
mA
(2
K
)
5
V
2
K
(
10
pF
)ln
4
.5n
sec
5
V
5
mA
(
2
K
)
3
.
0
V
Ch 10 MOS Digital
23
Propagation Delays Time for NMOS Inverters
Load
Resistor
iR
+
vi=VOL
_
vo
iD= 0
_
C
*
Output goes from High to Low
Drive transistor turns on to discharge
the capacitor but
Load resistor continues to provide
current.
V
i
R
V
DD
d
D
OH
t
R
C
ln
4
.
5
n
se
PHL
D
V
i
R
3
.
0
V
DD
d
D
*
Average Propagation Time tPD
Driver
VTh1 1.0 V
W1 5m, L1 1m
K1 3.1x104
vo
A
V2
vo
VDD
3V
VOL=
0.95V
Output goes from Low to High
Drive transistor turns off
Load resistor provides current to
charge up C.
V
V
DD
OL
t
R
C
ln
14
n
sec
PLH
D
V
3
.
0
V
DD
RD 2K
iC
+
*
VDD
3V
tPLH
ECES 352 Winter 2007
t
VOL=
0.95V
1
1
t
t
t
4
.
5
n
sec
14
n
sec
10
n
se
PD
PHL
PLH
2
2
tPHL
Ch 10 MOS Digital
t
24
Propagation Delay for NMOS Inverter
*
Load
iC
iR
Driver
C
iD
Driver
iDS
R
S
vi = vGS = VOH =5 V
T
vo=VOL
=0.95V
P
ECES 352 Winter 2007
vDS
*
Output goes from High (VOH = 5V) to
Low (VOL = 0.95V)
Driver transistor Q
(starts from P R S T)
At outset, Q is off (P), and
vDS1 = vo = VOH = 5V, vi < VTh
Driver turns on (P to R) when vGS
is switched to VOH = 5 V.
Driver initially is in saturation
mode, then eventually moves into
triode as capacitor discharges and
vo (= vDS) decreases
Q moves along constant vGS
characteristic (R S T).
Ends at (T) in triode region,
where vDS = vo = VOL = 0.95V.
Load resistor continuously
providing current opposing
discharge of capacitor.
Output goes from Low to High
Drive transistor is off
(vi = 0.95 V < VTh = 1.0 V
Transistor moves from T P as
the output voltage vo rises to 5 V.
vo =VOH = 5 V
Ch 10 MOS Digital
25
Power-Delay Product for NMOS Inverter
(E-MOSFET + Resistor Load)
* Average Propagation Time tPD
1
1
t
t
t
4
.
5
n
sec
14
n
sec
10
n
s
PD
PHL
PLH
2
2
* Average Power Dissipation P
C
(
0
10
mW
)
1
P
P
P
5
mW
HL
2
2
* Power-Delay Product DP
DP
P
t
5
mW
(
10
n
sec
50
p
PD
* Resistor’s Undesirable Effects
Wasted power for transistor on (output low)
V
V
5
V
0
.
95
V
DD
OL
i
2
.
0
mA
and
P
10
mW
R
L
R
2
K
D
Resistor provides limited charging current
Maximum iR = 2 mA, but iR decreases
as vo rises.
iR slows down discharge of C when
output goes low.
ECES 352 Winter 2007
* Problems with this inverter:
* Unequal noise margins!
NML = 0.05 V, NMH = 3.17 V
* Unequal transition times!
τPHL = 4.5 nsec, τPLH = 14 nsec
* Significant power dissipation!
Can we improve on this inverter ?
Ch 10 MOS Digital
26