REVIEW OF COMPLEX NUMBERS
Download
Report
Transcript REVIEW OF COMPLEX NUMBERS
REVIEW OF COMPLEX NUMBERS
•
•
•
•
•
•
•
•
Complex numbers are widely used to facilitate
computations involving ac voltages and currents
j = (-1); j2 = -1
A complex number C has a real and imaginary part
C = a + jb
a is the real part, b is the imaginary part
Can also use C = (a, b)
C = a + jb (rectangular form)
C = M θ (polar form)
C = Mcosθ + jMsinθ
Im
M a jb
b = Msinθ
θ =tan-1(b/a)
Re
a =Mcosθ
Complex Algebra and
Phasors
1
ARITHMETIC OPERATIONS
•
•
•
•
•
(a + jb) + (c + jd) = (a + c) + j(b + d)
(a + jb) - (c + jd) = (a - c) + j(b - d)
Polar form: M11 M 22 M1M 21 2
(a + jb) (c + jd) = (ac – bd) + j(bc + ad)
Polar form: M11 M1
M 2 2
•
•
•
M2
1
2
Complex conjugate C’ = a – jb = M
CC’ = a2 + b2
Special case reciprocal 1/j:
1 10
1 90 j
j 190
Complex Algebra and
Phasors
2
PHASORS (1)
•
•
•
•
•
A phasor is a mathematical representation of an ac
quantity in polar form
A phasor can be treated as the polar form of a complex
number, so it can be converted to an equivalent
rectangular form
To represent an ac voltage or current in polar form, the
magnitude M is the peak value of the voltage or current
The angle θ is the phase angle of the voltage or current
Examples: vt 170sin 377t 40 V 17040 V
it 0.05sin ωt A 0.050 A
vt 103 sin 106 t 120 A 103 120 V
•
•
The frequency of the phasor waveform does not
appear in its phasor representation, because we
assume that all voltages and currents in a problem
have the same frequency
Phasors and phasor analysis are used only in circuit
problems where ac waveforms are sinusoidal
Complex Algebra and
Phasors
3
PHASORS (2)
•
We can also use phasors to convert waveforms
expressed as sines or cosines to equivalent waveforms
expressed as cosines and sines respectively
Im
cos
cos (ωt - 30°)
=sin(ωt + 60°)
-30°
60°
Re
sin
-sin
45°
-135°
-sin(ωt + 45°)
=sin(ωt - 135°)
-cos
Complex Algebra and
Phasors
4
WORKED EXAMPLE
•
Take the two voltage waveforms:
v1 10sin ω 100 V
v2 20sin ωt 60 2060 V
•
Converting to rectangular form and adding
v1 10cos0 j sin 0 10 j 0
v2 20cos60 j sin 60 10 j17.32
v1 v2 20 j17.32
•
The polar form of v1 + v2 is
17.32
202 17.322 tan1
26.4640.9
20
•
Finally converting the polar form to sinusoidal form
v1 v2 26.46sinωt 40.9 V
•
Example: Find i1 – i2 if i1 = 1.5sin(377t + 30°) A and i2 =
0.4sin(377t - 45°) A
Complex Algebra and
Phasors
5
PHASOR FORM OF RESISTANCE
•
•
The voltage v(t) = Vpsin(ωt + θ) V is in phase with the
current i(t) = Ipsin(ωt + θ) A when across a resistor
By Ohm’s Law
R
•
Converting to phasors we have
R
•
•
•
•
vt Vp sin ωt θ
it I p sin ωt θ
Vp θ
I p θ
Vp
Ip
0 ohms
We can regard resistance as a phasor whose
magnitude is the resistance in ohms and whose angle
is 0°
In the complex plane, resistance is a phasor that lies
along the real axis
The rectangular form of resistance is R + j0
Example: The voltage across a 2.2kΩ resistor is v(t) =
3.96sin(2000t + 50°) V. Use phasors to find the current
through the resistor. Draw a phasor diagram showing
the voltage and current
Complex Algebra and
Phasors
6
PHASOR FORM OF CAPACITIVE
REACTANCE
•
•
•
•
The current through a capacitor leads the voltage
across it by 90°
When v(t) = Vpsin(ωt + θ) V, i(t) = Ipsin(ωt + θ + 90°) A
Applying Ohm’s Law for capacitive reactance:
v(t) = XCi(t) or
Vp sin ωt θ
vt
XC
it I p sin ωt θ 90
•
Converting to phasor form
XC
•
•
•
•
Vp θ
I p θ 90
Vp
Ip
90
1
90
ωC
Capacitive reactance is regarded as a phasor whose
magnitude is |XC| = 1/ωC ohms, whose angle is -90°
Capacitive reactance is plotted down the negative
imaginary axis
The rectangular form is XC = 0 – j|XC|
Example: The current through a 0.25F capacitor is
i(t) = 40sin(2104t + 20°) mA. Use phasors to find the
voltage across the capacitor. Draw a phasor diagram
showing the voltage and current
Complex Algebra and
Phasors
7
PHASOR FORM OF INDUCTIVE
REACTANCE
•
•
•
The voltage across an inductor leads the current
through it by 90°
When i(t) = Ipsin(ωt + θ) A, v(t) = Vpsin(ωt + θ + 90°) V
Applying Ohm’s Law: v(t) = Xli(t) or
XL
•
Converting so phasor form
XL
•
•
•
•
vt Vp sin ωt 90
it
I p sin ωt
Vp θ 90 Vp
90 ωL90
I p θ
Ip
Inductive reactance is regarded as a phasor whose
magnitude is |XL| = ωL ohms with angle 90°
Inductive reactance is plotted up the imaginary axis
The rectangular form is XL = 0 + j|XL|
Example: The voltage across an 8mH inductor is
v(t) = 18sin(2π106t + 40°) V. Use phasors to find the
current through the inductor. Draw a phasor diagram
showing the voltage and current.
Complex Algebra and
Phasors
8