INTRODUCTION - Foundation Coalition
Download
Report
Transcript INTRODUCTION - Foundation Coalition
The operational amplifier, cont.
Has a multitude of circuit applications
Linear applications
Inverter, summer, integrator, etc.
Non-linear applications
Comparator
ECE 194
S’01
Introduction to Engineering II
Arizona State University
1
Classwork #2
R
a
i
R
R
f
f
b
R
c
i
n
v
-V
cc
n
-
v
o
+
v
a
+
+
v
+
b
v
v
p
+V
cc
c
Find vo
ECE 194
S’01
Introduction to Engineering II
Arizona State University
2
Inverting summing amplifier
iA iB iC iF in 0
iA, B, C
vA, B, C vn v A, B,C
RA, B,C
RA,B,C
vO vn vo
iF
RF
RF
RF
RF
RF
vO v A vB vC
RA
RB
RC
ECE 194
S’01
Introduction to Engineering II
Arizona State University
3
Op amp non-linear applications
The output voltage is a function of the input voltage difference
v
o
V
cc
v
_
_
p
v
n
V
cc
Op amp can be forced to work in the linear region with feedback
Without feedback, the operation is quite different
ECE 194
S’01
Introduction to Engineering II
Arizona State University
4
The comparator
A comparator is a circuit that monitors two input
voltages
One is called the reference voltage, and the other the
input voltage
The output voltage depends upon the relation
between the reference voltage and the input
voltage, i.e., whether Vin is larger or smaller than
Vref
Op amps operated without feedback can act as
comparators
ECE 194
S’01
Introduction to Engineering II
Arizona State University
5
Comparator
Reference voltage to positive input
Inverti ng comparator
V
out
V
in
A
V
out
V
ref
+
B
V
ref
V
in
Reference voltage to negative input
V
out
Non-i nverting compar ator
A
V
ref
V
in
V
out
B
+
V
ref
ECE 194
S’01
Introduction to Engineering II
Arizona State University
V
in
6
Comparator circuits
V
ref
-
Electr ical sig nals
V
in
S’01
Acti on
+
Physical signals
ECE 194
V
out
Introduction to Engineering II
Physical outputs
Arizona State University
7
Generic comparator circuit
Physical and electrical
input signals
R
R1
vin
VCC
R1 RA
ECE 194
S’01
V
CC
Physical and electrical
outputs
R
d
R
A
LED
B
+
R
1
R
2
Introduction to Engineering II
vref
R2
VCC
R2 RB
Arizona State University
8
Comparator circuits
What are RA and RB? Circuit components that convert
physical signals to electrical signals by having
electrical properties that change with external physical
changes.
Examples:
Thermistors - temperature sensitive resistors
Photoconductors - light sensitive resistors
Strain gauges - strain sensitive resistors
Microphones - sound sensitive components
ECE 194
S’01
Introduction to Engineering II
Arizona State University
9
Comparator circuits
Output component examples
LEDs driven by op amp output
Power transistor stages to drive LEDs, buzzers, relays
Other amplifier stages
Voltage to frequency converters
Analog to digital converters
Multimeters
Motors
Timers, clocks, recorders
ECE 194
S’01
Introduction to Engineering II
Arizona State University
10
Additional circuit components
Variable resistor
Diode
I
d
+
V
R
R
1
D
d
_
=
V
I
R
d
2
RV = R1 + R2
V
d
V
ECE 194
S’01
Introduction to Engineering II
t
Arizona State University
11
Additional circuit components
Bipolar junction transistor
Transistor
Field effect transistor
FET
I
M
I
D
C
D
Q
IC ≈ I E
I
V
ID = I S
S
G +
B
_
I
E
I
S
Large current (VG > 0)
Large current (IB > 0)
IC
ECE 194
Zero (IB = 0)
S’01
Introduction to Engineering II
ID
Zero (VG = 0)
Arizona State University
12
Additional circuit components
Sensing resistor
Relay
R
R = R(Temperature)
R = R(Pressure)
R = R(Light)
ECE 194
S’01
Introduction to Engineering II
Electromechanical device a small current is used to control
a large current
Arizona State University
13
Example comparator circuit
Light activated switch
+ 9V
R
4
470
R
1
100 K
_
Q
1
+
R
741 OPAMP
3
4.7 K
2N2222
LED
PC
1
LED is on when
input is below Vref
R
2
1M
Resistance of photoconductor
decreases when illuminated
ECE 194
S’01
Introduction to Engineering II
Arizona State University
14
Classwork
Building upon ideas from previous circuit,
design a Dark Activated Switch
ECE 194
S’01
Introduction to Engineering II
Arizona State University
15
Classwork
Build and test this circuit use a voltmeter to measure voltages in circuit
9V
1K
LED
100K
+
10K to 100K
100K
ECE 194
S’01
Introduction to Engineering II
Arizona State University
16