Transcript Slides

ME 475/675 Introduction to
Combustion
Lecture 3
Thermodynamic Systems (reactors)
1π‘Š2
1𝑄2
Inlet i
π‘šπ‘– 𝑒 + 𝑃𝑣
Outlet o
𝑖
Dm=DE=0
π‘š0 𝑒 + 𝑃𝑣
π‘œ
m, E
𝑄𝐢𝑉
π‘ŠπΆπ‘‰
β€’ Closed systems
β€’
1𝑄2
βˆ’ 1π‘Š2 = π‘š 𝑒2 βˆ’ 𝑒1 +
𝑣22
2
βˆ’
𝑣12
2
+ 𝑔 𝑧2 βˆ’ 𝑧1
β€’ Open Steady State, Steady Flow (SSSF) Systems
β€’ 𝑄𝐢𝑉 βˆ’ π‘ŠπΆπ‘‰ = π‘š β„Žπ‘œ βˆ’ β„Žπ‘– +
π‘£π‘œ2
2
βˆ’
𝑣𝑖2
2
+ 𝑔 π‘§π‘œ βˆ’ 𝑧𝑖
β€’ How to find changes, 𝑒2 βˆ’ 𝑒1 and β„Žπ‘œ βˆ’ β„Žπ‘– , for mixtures when temperatures and
composition change due to reactions (not covered in Thermodynamics I)
Calorific Equations of State for a pure substance
β€’ 𝑒 = 𝑒 𝑇, 𝑣 = 𝑒(𝑇) β‰  𝑓𝑛(𝑣)
β€’ β„Ž = β„Ž 𝑇, 𝑃 = β„Ž(𝑇) β‰  𝑓𝑛(𝑃)
For ideal gases
β€’ Differentials (small changes)
β€’ 𝑑𝑒 =
β€’ π‘‘β„Ž =
πœ•π‘’
𝑑𝑇
πœ•π‘‡ 𝑣
πœ•β„Ž
𝑑𝑇
πœ•π‘‡ 𝑃
β€’ For ideal gas
β€’
πœ•π‘’
=
πœ•π‘£ 𝑇
0;
+
+
πœ•π‘’
πœ•π‘£ 𝑇
πœ•β„Ž
πœ•π‘ƒ 𝑇
πœ•π‘’
πœ•π‘‡ 𝑣
= 𝑐𝑣 𝑇
πœ•β„Ž
πœ•π‘‡ 𝑃
= 𝑐𝑃 𝑇
β€’ 𝒅𝒖 = 𝒄𝒗 𝑻 𝒅𝑻
β€’
πœ•β„Ž
=
πœ•π‘ƒ 𝑇
0;
β€’ 𝒅𝒉 = 𝒄𝑷 𝑻 𝒅𝑻
β€’ Specific Heats, 𝑐𝑣 and 𝑐𝑃 [kJ/kg K]
β€’ Energy input to increase temperature of one
kg of a substance by 1°C at constant volume
or pressure
β€’ How are 𝑐𝑣 𝑇 and 𝑐𝑃 𝑇 measured?
𝑑𝑣
𝑑𝑃
𝑐𝑝
𝑐𝑣
w
Q
m, T
V = constant
Q
m, T
P = wg/A = constant
β€’ Calculate 𝑐𝑝 π‘œπ‘Ÿ 𝑣 =
𝑄
π‘šΞ”π‘‡ 𝑝 π‘œπ‘Ÿ 𝑣
β€’ Molar based
β€’ 𝑐𝑝 = 𝑐𝑝 βˆ— π‘€π‘Š; 𝑐𝑣 = 𝑐𝑣 βˆ— π‘€π‘Š
T [K]
Q [joules]
Molar Specific Heat Dependence on Temperature
𝑐𝑝 𝑇
π‘˜π½
π‘˜π‘šπ‘œπ‘™ 𝐾
𝑇 [K]
β€’ Monatomic molecules: Nearly independent of temperature
β€’ Only possess translational kinetic energy
β€’ Multi-Atomic molecules: Increase with temperature and number of molecules
β€’ Also possess rotational and vibrational kinetic energy
Specific Internal Energy and Enthalpy
β€’ Once 𝑐𝑣 𝑇 and 𝑐𝑝 𝑇 are known, specific enthalpy h(T) and internal energy u(T)
can be calculated by integration
β€’ 𝑒 𝑇 = π‘’π‘Ÿπ‘’π‘“ +
β€’ β„Ž 𝑇 = β„Žπ‘Ÿπ‘’π‘“ +
𝑇
𝑐
π‘‡π‘Ÿπ‘’π‘“ 𝑣
𝑇
𝑐
π‘‡π‘Ÿπ‘’π‘“ 𝑝
𝑇 𝑑𝑇
𝑇 𝑑𝑇
β€’ Primarily interested in changes, i.e. β„Ž 𝑇2 βˆ’ β„Ž 𝑇1 =
𝑇2
𝑐
𝑇1 𝑝
𝑇 𝑑𝑇,
β€’ When composition does not change π‘‡π‘Ÿπ‘’π‘“ and β„Žπ‘Ÿπ‘’π‘“ are not important
β€’ Tabulated: Appendix A, pp. 687-699, for combustion gases
β€’ bookmark (show tables)
β€’ Curve fits, Page 702, for Fuels
β€’ Use in spreadsheets
β€’ 𝑐𝑣 = 𝑐𝑝 βˆ’ 𝑅𝑒 ;
β€’ 𝑐𝑝 =𝑐𝑝 /π‘€π‘Š; 𝑐𝑣 =𝑐𝑣 /π‘€π‘Š
Mixture Properties
β€’ Extensive Enthalpy
β€’ π»π‘šπ‘–π‘₯ = π‘šπ‘– β„Žπ‘– = π‘š π‘‡π‘œπ‘‘π‘Žπ‘™ β„Žπ‘šπ‘–π‘₯
β€’ π’‰π’Žπ’Šπ’™ (𝑻) =
β€’ π»π‘šπ‘–π‘₯ =
π‘š 𝑖 β„Žπ‘–
π‘šπ‘‡π‘œπ‘‘π‘Žπ‘™
=
π’€π’Š π’‰π’Š (𝑻)
𝑁𝑖 β„Žπ‘– = π‘π‘‡π‘œπ‘‘π‘Žπ‘™ β„Žπ‘šπ‘–π‘₯
β€’ π’‰π’Žπ’Šπ’™ (𝑻) =
𝑁𝑖 β„Žπ‘–
π‘π‘‡π‘œπ‘‘π‘Žπ‘™
=
πŒπ’Š π’‰π’Š (𝑻)
β€’ Specific Internal Energy
β€’ π’–π’Žπ’Šπ’™ (𝑻) = π’€π’Š π’–π’Š (𝑻)
β€’ π’–π’Žπ’Šπ’™ 𝑻 = πŒπ’Š π’–π’Š 𝑻
β€’ Use these relations to calculate
mixture specific enthalpy and internal
energy (per mass or mole) as functions
of the properties of the individual
components and their mass or molar
fractions.
β€’ u and h depend on temperature, but
not pressure
Standardized Enthalpy and Enthalpy of Formation
β€’ Needed to find 𝑒2 βˆ’ 𝑒1 and β„Žπ‘œ βˆ’ β„Žπ‘– for chemically-reacting systems because
energy is required to form and break chemical bonds
β€’ Not considered in Thermodynamics I
π‘œ
β€’ β„Žπ‘– 𝑇 = β„Žπ‘“,𝑖
π‘‡π‘Ÿπ‘’π‘“ + Ξ”β„Žπ‘ ,𝑖 (𝑇)
β€’ Standard Enthalpy at Temperature T =
β€’ Enthalpy of formation from β€œnormally occurring elemental compounds,” at standard
reference state: Tref = 298 K and P° = 1 atm
β€’ Sensible enthalpy change in going from Tref to T =
𝑇
𝑐
π‘‡π‘Ÿπ‘’π‘“ 𝑝
𝑇 𝑑𝑇
β€’ Normally-Occurring Elemental Compounds
β€’ Examples: O2, N2, C, He, H2
π‘œ
β€’ Their enthalpy of formation at π‘‡π‘Ÿπ‘’π‘“ = 298 K are defined to be β„Žπ‘“,𝑖
π‘‡π‘Ÿπ‘’π‘“ = 0
β€’ Use these compounds as bases to tabulate the energy to form other compounds
Standard Enthalpy of O atoms
β€’ To form 2O atoms from one O2 molecule requires 498,390 kJ/kmol of energy
input to break O-O bond (initial and final T and P are same)
β€’ At 298K (1 mole) O2 + 498,390 kJ οƒ  (2 mole) O
498,390 kJ
π‘˜π½
π‘œ
β€’ β„Žπ‘“,𝑂 π‘‡π‘Ÿπ‘’π‘“ =
= + 249,195
2 π‘˜π‘šπ‘œπ‘™π‘‚
π‘˜π‘šπ‘œπ‘™π‘‚
π‘œ
β€’ β„Žπ‘“,𝑖
π‘‡π‘Ÿπ‘’π‘“ for other compounds are in Appendices A and B, pp 687-702
β€’ To find enthalpy of O at other temperatures use
π‘œ
β€’ β„Ž 𝑂2 𝑇 = β„Žπ‘“,
𝑂2 π‘‡π‘Ÿπ‘’π‘“ + Ξ”β„Žπ‘ , 𝑂2 (𝑇)
Example:
β€’ Problem 2.14, p 71: Consider a stoichiometric mixture of isooctane and
air. Calculate the enthalpy of the mixture at the standard-state
temperature (298.15 K) on a per-kmol-of-fuel basis (kJ/kmolfuel), on a
per-kmol-of-mixture basis (kJ/kmolmix), and on a per-mass-of-mixture
basis (kJ/kgmix).
β€’ Find enthalpy at 298.15 K of different bases
β€’ Problem 2.15: Repeat for T = 500 K
Standard Enthalpy of Isooctane
T [K]
298.15
theta
0.29815
h [kJ/Kmol]
-224108.82
a1
a2
-0.55313 181.62
-0.16492 8.072412
a3
a4
a5
-97.787 20.402 -0.03095
-0.8639 0.040304 0.103807
a6
-60.751
-60.751
β€’ Coefficients π‘Ž1 to π‘Ž8 from Page 702
𝑇 [𝐾]
;
1000 𝐾
π‘˜π½
π‘œ
β„Ž
=
π‘˜π‘šπ‘œπ‘™π‘’
β€’ πœƒ=
β€’
4184(π‘Ž1 πœƒ
πœƒ2
+ π‘Ž2
2
πœƒ3
+ π‘Ž3
3
β€’ Spreadsheet really helps this calculation
+
πœƒ4
π‘Ž4
4
βˆ’
π‘Ž5
πœƒ
+ π‘Ž6 )
a8
20.232
Enthalpy of Combustion (or reaction)
Reactants
298.15 K, P = 1 atm
Stoichiometric
𝑄𝐼𝑁 < 0
π‘Šπ‘‚π‘ˆπ‘‡
Products
Complete Combustion
CCO2 HH2O
= 0 298.15 K, 1 atm
β€’ How much energy can be released if product temperature and pressure are the
same as those of the reactant?
β€’ Steady Flow Reactor
β€’ 𝑄𝐼𝑁 βˆ’ π‘Šπ‘‚π‘ˆπ‘‡ = 𝐻𝑃 βˆ’ 𝐻𝑅 = π‘š β„Žπ‘ƒ βˆ’ β„Žπ‘…
β€’ π‘„π‘‚π‘ˆπ‘‡ = 𝐻𝑅 βˆ’ 𝐻𝑃 = π‘š β„Žπ‘… βˆ’ β„Žπ‘ƒ