TWEPP2011_IPHC - Indico
Download
Report
Transcript TWEPP2011_IPHC - Indico
A Reticule Size CMOS Pixel Sensor (ULTIMATE) Dedicated to
the STAR HFT Upgrade
Thanh Hung PHAM
on behalf of the IPHC (Strasbourg) PICSEL group
Outline
STAR HFT Upgrade: PXL detector
CMOS Pixel Sensor requirements
Sensors optimization
Recent ULTIMATE test results
Lab test and Beam test
Summary + Perspectives
Heavy Flavor Tracker (HFT) at STAR
HFT is an upgrade of the inner tracking system of STAR
detector comprising :
SSD – Silicon Strip Detector
IST – Inner Silicon Tracker
PXL – Pixel Detector (2 layers at 2.5 & 8 cm)
Physical Goals : Identification of mid rapidity Charm and
Beauty mesons and baryons through direct reconstruction
and measurement of the displaced vertex with excellent
pointing resolution
TPC
26-30/09/2011
~1 mm
TWEPP 2011
SSD
~300 µm
IST
~ 150 µm
~250 µm
IPHC [email protected]
PXL
<30 µm
vertex
STAR
2
PIXEL SENSORS FOR HFT
Sensors Requirements
Multiple scattering minimisation:
Sensors thinned to 50 µm, mounted on a flex
kapton/aluminum cable
X/X0 = 0.37% per layer
Sufficient resolution to resolve the secondary
decay vertices from the primary vertex
~200-300 (600) hits / sensor (~4 cm2) in the
integration time window
Short integration time ~< 200 µs
Low mass in the sensitive area of the detector
airflow based system cooling
carbon fiber sector tubes
(~ 200µm thick)
Luminosity = 8 x 1027 / cm² / s at RHIC_II
< 10 µm
Work at ambient (~ 35 °C ) temperature
Power consumption <~ 150 mW / cm²
Sensors positioned close (2.5 - 8 cm radii) to
the interaction region
~ 150 kRad / year
few 1012 Neq / cm² / year
RDO
buffers/
drivers
MAPS
4-layer kaptonconductor
cable with aluminium
Aluminum
Laddertraces
Flex Cable
Ladder with 10 MAPS sensors (~ 2×2 cm² each)
Insertion from one side
2 layers
10 sectors
4 ladders/sector
Leo Greiner @ St Odile CMOS Workshop, Sep 2011
26-30/09/2011
TWEPP 2011
IPHC [email protected]
STAR
3
Main characteristics of ULTIMATE (Mimosa-28) sensor
0.35 μm process with high-resistivity epitaxial layer
column // architecture with in-pixel CDS & amplification
end-of-column discrimination and binary charge encoding,
followed by zero suppression logic
active area: 960 columns of 928 pixels (19.9×19.2 mm²)
pitch: 20.7 μm ~0.9 million pixels
charge sharing >~ σsp 3.5 μm expected
tr.o. ≤ 200 μs ( ~ 5×103 frames/s)
suited to >106 part./cm²/s
2 outputs at 160 MHz
≤ 150 mW/cm² power consumption
Radiation tolerant (~150 kRad/year & 3x1012 neq/cm²)
26-30/09/2011
Submitted by end-January 2011
Received early April 2011
TWEPP 2011
IPHC [email protected]
STAR
4
Main characteristics of ULTIMATE (Mimosa-28) sensor (suite)
Based on expertise's acquired from
M26 chip for EUDET, the design
of ULTIMATE has been optimized
for STAR environment
8 analog outputs
(Test purpose only)
Pixel Optimization:
Row sequencer
Minimize the delays of
signals over ~2cm
Pixels Ref Regulator &Analog
Power Supply regulator
(Optional)
Reduce I/O pads
Programmable (Ref
Regulator)
Radtol ~ 150 kRad/year &
3x1012Neq/cm²/year
Consumption < 150mW/cm2
Large reticule size
(~2cmx2cm)
End-column 960 discriminators:
Offset compensation
Encoding & Zero
suppression logic:
STAR conditions
Bias current & Ref DACs
High data size & Rate:
I/O Pads: Powers, LVDS &
Controls
JTAG Configuration
26-30/09/2011
2 Memories 2048x32-bits
2 Outputs at 160 MHz
PLL (Optional)
TWEPP 2011
IPHC [email protected]
STAR
5
Pixel optimization
Slct_Row
Radiation Tolerant and Power Consumption
Enclosed layout transistor M4
Tradeoff
between Power Consumption and Radiation
Tolerant -> Optimization of pixels size (20.7x20.7µm²)
~2x2cm2
16 pix
Slct_Row
Slct_Gr
Slct_Row
reticule size
Multiplex pixels output to reduce the capacitance of
output nodes
Slct_Row
Optimization of output buffer stage (transistors M7,
M8 & M9) in order to drive 2cm of metal line
Slct_Row
16 pix
Slct_Gr
R ~ 1.9 KΩ
C ~ 4 pF
Slct_Row
~ 2 cm long!!!
~50µA
RD
~3µA
CALIB
Out group
LATCH
Column-level
Discriminator
M9
Select_Gr
26-30/09/2011
TWEPP 2011
IPHC [email protected]
STAR
6
Digital conception challenges
200 ns
19295µm
250µm
2cm of row controls signal
Row sequencer logic : Uniformly distributed with dispersion < 500ps
Optimization of zero suppression to cope with STAR environment
Up to 9 states /row
Segmented by 15 groups of 64 columns -> Symmetrical distributions of digital controls over ~2cm (at
50MHz)
High density & High speed readout :~0.9 Mpix & < 200µs frame readout
2 memories of 2048x32 bits
2 outputs of 160MHz
Increase frequency up to 160MHz
Layout constraint : 2261µmx19872µm
The output of SRAM is serialized at 160MHz
Row sequencer
SDS
Memory management
2261 µ m
MUX
SRAM 2048 x 32
Seq
Serializer
26-30/09/2011
TWEPP 2011
1
SRAM 2048 x 32
2
19872 µm
IPHC [email protected]
STAR
7
On-chip Regulators
Internal Pixel References Voltages
RDO
buffers/
drivers
MAPS
4-layer kapton cable with aluminium traces
Vcl
Integrated VCL Regulator
Ultimate
~2x2cm
²
Ladder of 10 Ultimate sensors using external Vcl
Reduce crosstalk between sensors
Reduce material budget: no extra
decoupling capacitors
Crosstalk between sensors through Vclp
Serial RC
network
Error amplifier
Buffer
Output stage
Vdda
Mz
c1
cz
Vbias
Msf1
Vbg
Vfb
Mpw
Msf2
c2
Vclamp
RA
RB
26-30/09/2011
TWEPP 2011
IPHC [email protected]
Size
0.0389 mm²
Capacitive
Load
> 5nF
Consumption
< 1mW
Output range
1.9-2.3V
Noise
74.8 nV/√Hz @ 1 kHz
PSRR
52 dB @ 10 kHz
38 dB @ 1 MHz
STAR
8
LAB TEST RESULTS
Analogue output noise (Mode Test):
Conditions:
Pixel array scan at 40MHz
T = 20°C
Nominal JTAG load
Analog Power Supply (VddA) = 3.3V
ENC ~ < 15 e- (On-chip reference regulator)
Gain ~ 65µV/eGood Noise uniformity
The CCE is very little sensitive to Temperature and Analog
Power Supply variations
Charge Collection Efficiency (Mode Test):
CCE
Ultimate
Sensor
Temperature
Calib
peak
(UADC)
ENC
(e-)
~20 °C
395
~35 °C
~45 °C
26-30/09/2011
Calib
peak
(UADC)
Seed
pixel
2x2
pixels
3x3
pixels
5x5
pixels
Analog
Power
Supply
13.8
24%
62%
82%
94%
Vdd_a = 3.3V
395
385
16.4
24%
62%
83%
96%
Vdd_a = 3V
390
369
20.7
23%
63%
85%
99%
TWEPP 2011
IPHC [email protected]
CCE
ENC
(e-)
Seed
pixel
2x2
pixels
3x3
pixels
5x5
pixels
13.8
24%
63%
82%
95%
13.9
24%
62%
83%
95%
STAR
9
Scan of matrices pixel and discriminator
Sub-matrix A
Sub-matrix A
Sub-matrix A
(Column 1-240)
Sub-matrix B
(Column 241- 480)
Sub-matrix C
Column 481 – 720)
Sub-matrix D
Column 721 -960
Temporal Noise (mV)
1
0.95
0.92
0.9
Fixed Pattern Noise (mV)
0.57
0.49
0.48
0.47
26-30/09/2011
TWEPP 2011
IPHC [email protected]
STAR
10
Beam Test Results (July 2011)
Conditions:
CERN-SPS 120 GeV π− beam
BT made of 6 Ultimate sensors(20µm thick epi)
T = 20°C & 30°C
ionizing radiation dose: 0&150 kRad
Analog power supply : 3V & 3.3V
Results:
Efficiency > 99.5 % with a fake hit rate << 10-4
Spatial resolution < 4 µm
26-30/09/2011
TWEPP 2011
IPHC [email protected]
STAR
11
Conclusion & perspectives
ULTIMATE sensors for the PXL detector of STAR HFT experiment has
been designed and tested in 2011
The lab test and beam test showed :
Robust regarding temperature variations
Operational with analog power supply down to 3V
High detection efficiency ( > 99%) with very low fake event of beam test
High yield : > 90%
12 sensors fully functional
4 with 1% of death pixels
26-30/09/2011
The Ultimate sensor fulfils all STAR HFT specifications
Engineering run of ULTIMATE sensor (12 wafers) is being submitted in
September for equipping the engineering prototype detector
Start of run at RHIC in FY 2012
The ULTIMATE sensor development allows to accumulate expertises for
future sensor designs (ALICE, AIDA, CBM, EIC, …)
TWEPP 2011
IPHC [email protected]
STAR
12
BACKUP SLIDES
26-30/09/2011
TWEPP 2011
IPHC [email protected]
STAR
13
MIMOSA26 with high resistivity EPI layer (1)
Charge collection efficiency for the seed pixel, and for 2x2 and 3x3 pixel clusters
Standard (~10 .cm) 14 µm
EPI layer
Seed
CCE
EPI
layer
source)
2x2
High resistivity (~400 .cm)
3x3
Standard (~10 .cm) 14 µm
~21%
~ 2x2
54 %
~ 3x3
71 %
Seed
(55Fe
EPI
thickness
seed
15EPI
µm
20 µm
10 µm
~ 22 %
~ 36 %
~ 57 %
~ 85 %
~ 76 %
~ 95 %
(a)
~21%
~ 54 %
~ 71 %
15 µm
~ 31 %
~ 78 %
~ 91 %
Standard
.cm) pixel
14 µm before20irradiation
High
resistivity
(~400
µm
~ 22
% after~exposure
57 % .cm)~ 76 %
noise ratio
for (~10
the seed
and
Signal to
EPI layer
to
a fluence of
6 xirradiation
1012 neq / After
cm² 6x1012 n(a)
Before
eq/cm²
S/N at seed
EPI
layer
pixel
(106Ru source)
S/N at seed
pixel
(106Ru source)
Standard (~10 .cm) 14 µm
~ 20
10.7
-/11.6 e-)
Before
After 6x1012 neq/cm²
(230 eirradiation
~ 20
(230 e-/11.6 e-)
Christine HU@TWEPP 2010
26-30/09/2011
3x3
~ 36resistivity
%
~ (~400
85 % .cm)~ 95 %
High
~seed
31 %
~ 2x2
78 %
~ 3x3
91 %
10 µm
thickness
CCE
55
( Fe source)
2x2
TWEPP 2011
(b)
10.7
EPI
thick
Before irradiation
10 µm
15EPI
µm
thick
After 6x1012 neq/cm²
35
22
High~ resistivity
(~400 .cm)
~ 41
2812
Before irradiation
After 6x10
neq/cm²
20 µm
10 µm
~ 36
~ 35
-------22
15 µm
~ 41
28
20 µm
~ 36
--------
(b)
IPHC [email protected]
STAR
14