00112r1P802-15_WG-The-Universal

Download Report

Transcript 00112r1P802-15_WG-The-Universal

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)
May 2000
doc.: IEEE 802.15-00/112r1
Submission Title: [Add name of submission]
Date Submitted: [10 May 2000]
Source: [Carl Panasik, Tom Siep] Company [Texas Instruments]
Address [12500 TI Blvd, m/s 8723, Dallas, TX 75243, USA]
Voice:[214.480.6786], FAX: [972.761.5581], E-Mail:[[email protected]]
Re: [Original document.]
Abstract: [Presentation made to Wireless LAN Forum in London.]
Purpose: [Update on possible technologies, awareness of presentation in London.]
Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for
discussion and is not binding on the contributing individual(s) or organization(s). The material in this
document is subject to change in form and content after further study. The contributor(s) reserve(s) the right
to add, amend or withdraw material contained herein.
Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE
and may be made publicly available by P802.15.
Submission
Slide 1
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
The Universal Radio
1st International Wireless LAN Forum
10 May 2000
Carl Panasik and Tom Siep
Texas Instruments Wireless Business Unit
www.ti.com
Submission
Slide 2
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
Agenda
• The Ideal Solution
• The Real World
• Wireless Data Standards
• The Universal Radio
• Technology Roadmap
Submission
Slide 3
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
Agenda
• The Ideal Solution
• The Real World
• Wireless Data Standards
• The Universal Radio
• Technology Roadmap
Submission
Slide 4
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
Desirable Wireless Access Attributes
• Always On, Always Available
• First Choice for Network Access
• Seamless Integration
– from Personal
– to Local
– to Metro Networks
• Frequency Reuse Factor = 1
– Increases the aggregate data rate that the
user experiences
Submission
Slide 5
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
The Ideal Information Companion
DECT
GSM
Bluetooth
UMTS
802.11
ONE WLAN
Information
phonefor
PDA
for
for
many
many
many
Appliance
Standards
Standards
Standards
Submission
Slide 6
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
Agenda
• The Ideal Solution
• The Real World
• Wireless Data Standards
• The Universal Radio
• Technology Roadmap
Submission
Slide 7
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
Year 2002
Implemented Wireless Data Standards
Log User Data Rate (Mbps)
10.0
5.0
TDD
2.0
HiperLAN/1
3G Access Point
3G Future
1.0
TDD
Home RF / 802.11
0.5
TDD
3G Cellular
Bluetooth
2G Cellular
0.2
0.1
1.0
10
100
1000
Log Range (m)
Submission
Slide 8
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
World-Wide Spectrum for IMT-2000
US Allocation differs from ROW
1850
1900
1950
2000
2050
2100
2150
2200
2250
2010 MHz
ITU Allocations
IMT 2000
IMT 2000
1885 MHz
Europe
GSM 1800
2025 MHz
UMTS
DECT
MSS
UMTS
MSS
1980 MHz
1880 MHz
1850 MHz WLL
China
2170 MHz
2110 MHz
IMT 2000
GSM 1800
2170 MHz
WLL
1885 MHz
210 MHz Duplex
MSS
IMT 2000
MSS
IMT 2000
MSS
1980 MHz
1885 MHz 1918 MHz
Japan
Korea (w/o PHS)
PHS
MSS
IMT 2000
1895 MHz
North
America
2160 MHz
PCS
AA
1850
D
B
E F
C
1900
AA
D
B
1950
E F
C
Reserve
MSS
2000
2050
2100
M
D
S
2150
2200
2250
90 MHz Duplex
Courtesy : UMTS Forum, Report # 5: “Minimum spectrum demand per public terrestrial UMTS operator in the initial phase”, 8 September, 1998
Submission
Slide 9
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
Agenda
• The Ideal Solution
• The Real World
• Wireless Data Standards
• The Universal Radio
• Technology Roadmap
Submission
Slide 10
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
Wireless Data Standards
Info Appliance
GSM
1800
TX
UMTS
GSM
1800
RX
1800 MHz
UMTS
2100 MHz
802.11/BT
HIPERLAN/1
802.11/BT
HIPERLAN/1
5200 MHz
2400 MHz
Channel Bandwidth
Data Rate
BT / 802.11
EDGE
UMTS
HIPERLAN/2
Submission
Slide 11
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
Wireless Data
Modulation / Bandwidth
Log User Data Rate (Mbps)
10.0
GMSK+ nxFSK / 10 MHz
M-CODE
5.0
2.0
HiperLAN/1
QPSK / 5-MHz
CDMA
3G Access Point
1.0
0.5
3G Future
Home RF / 802.11
FSK / 1-MHz
FH SS
Bluetooth
3G Cellular
2G Cellular
0.2
0.1
1.0
10
100
1000
Log Range (m)
Submission
Slide 12
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
W-LAN (MS) PHY Layer
Param eter
Operating
Frequency
Spread Spectrum
Method
Data Rate
GSM 2G Cell
890-915 MHz (RX)
935-960 MHz (TX)
TDMA/FDMA/FDD
W-CDMA 3G Cell
2110 - 2170 (RX)
1920 - 1980 (TX)
CDMA/FDD
W-CTDMA 3G
2110 - 2170 (RX)
1920 - 1980 (TX)
CDMA/TDD
IEEE 802.11 WLAN
2400 - 2483.5 MHz
ISM
FHSS
Bluetooth
2400 - 2483.5 MHz
ISM
None or FHSS
9.6 - 64 kbps
32 kbps -384 kbps
256 kbps -4 Mbps
1 Mbps
2 Mbps
0.7 Mbps
2 Mbps (future)
Hom eRF
2400 - 2483.5 MHz
ISM
FHSS, TDMA or
CSMA/CA
1 Mbps
2 Mbps
Modulation
Method
(Index)
GMSK (BT=0.3)
QPSK data
2-FSK (0.32)
modulation on up
4-FSK (0.16,
and dow n;
optional)
Spreading is QPSK.
SF = 2-16
2-FSK (0.32)
TBD (TBD)
2-FSK
4-FSK (required)
Hop Rate
opt, 21.66 Hz
(1/4.615 ms)
QPSK data
modulation on up
and dow n;
Spreading is QPSK
on up and BPSK on
dow n.
na
na
2.5 Hz
0 / 1600 Hz (max)
50 Hz
224 msec
220 msec
300 msec
25 microsec
Channel
Sw itching Tim e
Rx/Tx Turnaround half duplex
Tim e
Antenna Diversity na
na
Tx RF Pow er
half duplex
19 msec
220 msec
Optional
Optional
Optional
Not Required
1.6W (384 kbps),
0.8W (128 kbps)
0.2W (2 Mbps),
0.1W (0.5 Mbps)
<1W (US)
100 mW (Europe &
Japan)
Rx Sensitivity
-110 dBm
-80 dBm @ 1 Mbps
-75 dBm @ 2 Mbps
Tx Stability
+/- 9 Hz
+/- 2 kHz
+/- 2 kHz
+/- 60 kHz
Tx Spectrum
-30 dBc, 1st Adj Ch -40 dBc, 1st Adj Ch -40 dBc, 1st Adj Ch -40 dBc, 2nd Adj
Shape
-60 dBc, 2nd Adj Ch -60 dBc, 2nd Adj Ch -60 dBc, 2nd Adj Ch Ch
60 dBc, 3rd Adj Ch
Hop Seqnce, # Ch. random, <124
na
na
random, 80
0.001 / 0.100 W
0.1 W (N. America)
-70 dBm @ 1 Mbps
-76 dBm @ 1 Mbps
Pow er
Consum ption
Standby / Max
0.3 - 30 ma
@ 5 vDC
Submission
<1W
full duplex
2 ma RX Avg
120 ma TX Avg
fd
fd
Slide 13
?
?
random, 79 or 23
random, 79 or 23
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
The building of the tower of Babel by Pieter Bruegel, 1563, Oil on oak panel, Kunsthistorisches Museum, Vienna
Submission
Slide 14
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
Agenda
• The Ideal Solution
• The Real World
• Wireless Data Standards
• The Universal Radio
• Technology Roadmap
Submission
Slide 15
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
Solving the “Tower of Babel”
Solution is the Universal Radio:
– What is Software Defined Radio?
– How do you Design a Multi-Mode
Information Receiver?
Submission
Slide 16
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
What is Software Defined Radio?
• Technology to create
Multi-Mode radio
Multi-Band radio
for mobile multimedia platforms
• Radios that are
flexible
easily configurable by software
• Radios based on
virtual components (ie. system-on-a-chip)
Submission
Slide 17
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
SDR Evolution
• Current Wireless Data: 802.11, Bluetooth
– TDMA
– Frequency Domain Channelization
– Narrow Band, Time-Shared Medium
– Friendly Interference Suppressed Via IF Filters
with 50-60 dB Skirts
– Hardware-centric, Fixed Channel Characteristics
Submission
Slide 18
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
SDR Evolution
• Next Generation: HIPERLAN/2, 3G Cellular
– OFDM, CDMA
– Code Domain Channelization
– Wide Band, Frequency-Shared Medium
– Friendly Interference Suppressed Via Orthogonal
Chipping Codes with ~30 dB Processing Gain
– Software-centric, Can Vary Channel Characteristics
with Application and Environment
Submission
Slide 19
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
SDR Evolution
Heterodyne Receiver
RF Band Filter
Low Noise
Amplifier
RF Mixer
RF Image Filter
IF Filter
IF
Amplifier
IF
Amplifier
IF Mixer
2nd IF
Filter
2nd IF
Amplifier
In-Phase
Data
Demodulator
Quad-Phase
Data
RF Local
Oscillator
IF Local
Oscillator
A -> D
A -> D
A -> D
Future
Radio Proposal
Proposed Software
Radio
Present Day
Radios
<--- 1800 to 5200 MHz --->
Submission
<--- 40 to 200 MHz --->
Slide 20
<--- 10 to 100 MHz --->
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
Wireless Data Standards
Info Appliance
GSM
1800
TX
UMTS
GSM
1800
RX
1800 MHz
UMTS
2100 MHz
802.11
HIPERLAN/1
802.11
HIPERLAN/1
2400 MHz
5200 MHz
Channel Bandwidth
Data Rate
EDGE
UMTS
BT
802.11
HIPERLAN/1
Submission
Slide 22
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
Heterodyne Receivers?
RF Band Filter
Low Noise
Amplifier
RF Mixer
RF Image Filter
IF Filter
IF
Amplifier
IF
Amplifier
IF Mixer
2nd IF
Filter
2nd IF
Amplifier
In-Phase
Data
Demodulator
Quad-Phase
Data
RF Local
Oscillator
IF Local
Oscillator
GSM 1800
RF Band Filter
Low Noise
Amplifier
RF Mixer
RF Image Filter
IF Filter
IF
Amplifier
IF
Amplifier
IF Mixer
2nd IF
Filter
2nd IF
Amplifier
In-Phase
Data
Demodulator
Quad-Phase
Data
RF Local
Oscillator
IF Local
Oscillator
UMTS
RF Band Filter
Low Noise
Amplifier
RF Mixer
RF Image Filter
IF Filter
IF
Amplifier
IF
Amplifier
IF Mixer
2nd IF
Filter
2nd IF
Amplifier
In-Phase
Data
Demodulator
Quad-Phase
Data
RF Local
Oscillator
IF Local
Oscillator
Bluetooth 2400
RF Band Filter
Low Noise
Amplifier
RF Image Filter
RF Mixer
IF Filter
IF
Amplifier
IF
Amplifier
IF Mixer
2nd IF
Filter
2nd IF
Amplifier
In-Phase
Data
Demodulator
Quad-Phase
Data
RF Local
Oscillator
IF Local
Oscillator
HiperLAN
Submission
Slide 23
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
Multi-Mode Info Receiver
Conventional Heterodyne
GSM 1800
GSM 1800
UMTS
UMTS
BT / 802.11
BT / 802.11
0.200-MHz BW
LO1
Low-Pass
LO2
5.0-MHz BW
10-MHz Low-Pass
FDD Mode 1
1.25-MHz Ch l
Legend
2G Cellular
10-MHz Low-Pass
LO4
1.25-MHz Ch 2
10-MHz Low-Pass
LO5
3G Cellular
1.25-MHz Ch 3
10-MHz Low-Pass
FDD Mode 2
LO3
BT / 802.11
LO6
1.0-MHz BW
Low-Pass
LO7
Submission
Slide 24
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
Multi-Mode Info Receiver
Software Defined Radio
GSM 1800
GSM 1800
UMTS
UMTS
BT / 802.11
BT / 802.11
A/D
Converter
Submission
Programmable
Channel Filter
Slide 26
LO
I
Q
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
Agenda
• The Ideal Solution
• The Real World
• Wireless Data Standards
• The Universal Radio
• Technology Roadmap
Submission
Slide 27
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
The Technology Race
Analog
+10 dBm
Digital
0 dBm
- 20 dBm
Voltage range
limited from KTB
to nearly the
battery voltage
- 40 dBm
- 60 dBm
1.1-volt designs
are several orders
of magnitude
above KTB*
- 80 dBm
- 100 dBm
- 120 dBm
Submission
Slide 28
KTB = Thermal noise floor
= Boltzman’s Constant * Temp (K) * Bandwidth
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
Technology Roadmap
To Developing the Universal Radio
• Move the Problem to the Digital Domain
– Today’s GSM Phone uses 100 MIPs
– The GSM channel implemented in the digital domain
requires over 500 MIPs without decimation techniques
– With appropriate pre-filtering, GSM channel filter can be only
5 MIPs… Not Applicable !
• No Talk-Time Degradation
• Battery Capacity Improved Barely 10% in 40 years!
Submission
Slide 29
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
Battery Progress
Secondary Cells
160
140
120
100
80
60
40
20
0
1940 1950 1960 1970 1980 1990 2000 2010
Energy Density
(Wh/kg)
Trend Line
First Commercial Use
NiCd
Submission
SLA
NiMH
Li-Ion
Slide 30
Reusable
Alkaline
LiPolymer
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
Technology Roadmap
To Developing the Universal Radio
• Move the problem to the digital domain
– Today’s GSM Phone uses 100 MIPs.
– The GSM channel implemented in the digital domain
requires over 500 MIPs
• No Talk-Time Degradation
• Battery Capacity Improved 4x in past 10 years
• Multi-Band Software Radio Will Require an Order of
Magnitude Increase in DSP Performance
But we have Moore’s Law on our side!
Submission
Slide 31
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
Moore’s Law
Thousands of Transistors
100000
10000
2.5 years.
Intel CPUs
P7
(Merced)
P6
P5 (Pentium Pro)
(Pentium)
80486
1000
80386
100
80286
8086
10
Doubling time of fitted line is 2.0 years.
1
4004
Year 1975
1980
1985
1990
1995
2000
The data used to construct this graph have been adapted from the Microprocessor Report 9(6),
May 1995 (as reported to me by Mark Seager). and the ChipList, by Aad Offerman.
Submission
Slide 32
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
TI Low-Power DSP Roadmap
MIPs increase of 5X by 2001
600%
500%
400%
300%
200%
100%
0%
3Q99
Submission
4Q99
1Q00
2Q00
Slide 33
3Q00
4Q00
1Q01
Tom Siep, Texas Instruments
May 2000
doc.: IEEE 802.15-00/112r1
Conclusion
• Anywhere Anytime Information
• Many Standards, Many Wireless Sources
• Multi-Band RF is the Next Challenge
• Multi-Mode Receivers Enabled by DSPs
• DSP MIPs are Ever Increasing
Submission
Slide 34
Tom Siep, Texas Instruments
May 2000
Submission
doc.: IEEE 802.15-00/112r1
Slide 35
Tom Siep, Texas Instruments