Transcript Document
1
IP integration
from Transistor to Package level
CONSEIL D’ORIENTATION DU GIP CNFM
StMalo 28/11/2012
Speaker name : Philippe Galy
TRD/CCDS/PIMDS/IP-infrastructure
Outline
• Integration context
• Focus on ESD : Events to IP solution
• Package & 3D connections
•Tooling : Checkers & Builders
• Partners & collaborations
Ph Galy JP CNFM 2012
28/11.2012
2
3
• Integration context
• Focus on ESD : Events to IP solution
• Package & 3D connections
•Tooling : Checkers & Builders
• Partners & collaborations
Ph Galy JP CNFM 2012
28/11.2012
Context
IP integration question of scale factor
IP or Macro IP is a complex design
Integration need to be compliant to package level
Design
Manufacturing
Assembly
System
Different solutions are
offered for our
customers to success
Ph Galy JP CNFM 2012
28/11.2012
4
Context
Manufacturing context
Complex Process flow
Complex facilities
Etching ; Plasma, RIE , Implantation …
Flavors of substrate : Bulk or PD/FD SOI
200 – 300 mm Wafer
Human
Machine
Ph Galy JP CNFM 2012
28/11.2012
5
Context
Technology context : FEOL
Thin & Thick oxide gate transistor
High K metal gate
Different topologies ; sub nanometer
Scale down of transistors & metal layers
Flavors of substrate : Bulk or PD/FD SOI
Gordon Moore
Planar MOSFETs
gate
gate
Silicon Substrate
Thin Silicon film
Bulk
FD SOI
20 nm
14 nm
10 nm and beyond
Ph Galy JP CNFM 2012
28/11.2012
6
Technology context : BEOL
Context
Stack metal : M1 to M11
Low K inter dielectric
Complex Stack & Via structure
Sub-Nano
MOS transistor
(FEOL)
Gate stack
Metal Stack
(BEOL)
Ph Galy JP CNFM 2012
28/11.2012
7
Context
IP context
High Density Memory
Dig/ ANA/ RF IP
LOW leakage IP
GO1/GO2 IP transistors
Multi Applications
1 000 000 000 XTors
High Density Blocks
Complex IO ring
SOC view
Ph Galy JP CNFM 2012
28/11.2012
8
Context
SOC context
Mtr
1000
Dig/ ANA/ RF SOC
LOW power / FAST SOC
8 CPU/GPU’s, 1-2GHz,
Multi processor
~3-7W, FC,
Multi Applications
6 CPU/GPU’s, 700MHz,
system
~3-6W,
WB,
1 000 000 Trs
on single package
Flip-Chip,
10 CPU/GPU’s,
>2GHz, ~3-7W,
Flip Chip / 3Dstack
Heterogeneous
Apps
System Co-design
FEnd
5 CPU’s, 500MHz
~3-4W, WB,
FE integration
500
PMIC Network
3CPU’s, 250MHz,
~3W,
200 Hierarchical Design,
Wire bonding
28nm FDSOI Available
- 24 nm possible
- Back Bias
- Poly Bias
- Co integration (Bulk + FD SOI)
100
50
90/80 nm
2004-2007
65/55 nm
2005-2010
45/40 nm
2008-2011
Ph Galy JP CNFM 2012
32/28nm
2009-2014
20nm
2012-20xx
28/11.2012
9
Context
Package context
10
Dig/ ANA/ RF
Multi Dice
Multi connections
Thermal behavior
Design/SOC
Assembly
Final Package
Backside view
Ph Galy JP CNFM 2012
28/11.2012
Context
System context
Dig/ ANA/ RF SOC
Power management
Multi Applications
Multi Chips
Multi protocol
Multi standard
Multi environment
Robust solution
Full Plat-Form solution
Ph Galy JP CNFM 2012
28/11.2012
11
12
• Integration context
• Focus on ESD : Events to IP solution
• Package & 3D connections
•Tooling : Checkers & Builders
• Partners & collaborations
Ph Galy JP CNFM 2012
28/11.2012
ESD event : True life
13
At least four standards are used to qualify a solution
Human Body Model (HBM)
Machine Model (MM)
A
30
Charged Device Model (CDM)
20
Human Metallic Model (HMM or Gun)
15
HBM IEC 8kV contact
CDM 500V
10
5
0
Different energy stresses: 1A, 2A & 30A
Different stress durations: 1ns to 100ns
t ns
HBM 4 kv
0
20
40
60
80
100 120
MM 200V
Comparison
HBM, CDM, CDM & IEC Stress
Ph Galy JP CNFM 2012
28/11.2012
ESD Challenges
ESD context
Chip context
Digital/Analog/RF and multi powers/Dice
Thin & Thick oxide gate transistor
Scale down of transistors/metal layers
Low power / Fast signal
Multi balls (1000) / multi dice/huge die size (100mm2)
Flavors of substrate : Bulk or PD/FD SOI
ESD Co-design Challenge
Provide efficient power devices
Provide efficient trigger circuit
Optimize : Silicon area, leakage, parasitic capacitance
Address all ESD standards for all IPs/Ios (RF/ANA/Dig)
Develop Robust & reliable ESD strategy for SOC (IO+core)
Take into account process discrepancy
Different energy stresses: 1A, 2A & 30A
Different stress duration: 1ns to 100ns
One or Two pins stressed
Can occurs all along the chip lifetime
Perform a Robust Design
thanks to checkers
CCDS
ESD Tools/Checkers Challenge
14
10 000 000 instances & more
Checker for IP/IO & core IPs
Pertinent /Robust/portable checkers
Ph Galy JP CNFM 2012
28/11.2012
14
Device Solutions
Different devices are required to address this challenge
Power device as primary protection
Fast device as secondary protection
Standard device as trigger element
Advanced device as new solution
Optimize silicon area
Optimize signal integrity
Don’t forget robust Metal & Via connection
(not discussed here)
Ph Galy JP CNFM 2012
28/11.2012
15
Example : BIMOS transistor
Device Solutions
16
BIMOS Tr = Bipolar + MOS Effects (Theoritical view)
Design solution to catch :
- Dynamic ESD event
- Quasi Static ESD event
TC
R
Dynamic Response
4
3.5
3
2.5
2
1.5
1
0.5
0
0.1
Zener !
0.08
Current (A)
Voltage (V)
0.E+00
Quasi-static Response
(Body + gate bias)
5.E-07
1.E-06
Time (s)
2.E-06
2.E-06
0.06
0.04
Single BIMOS
0.02
0
Ph Galy JP CNFM 2012
0
1 Voltage
2 (V) 28/11.2012
3
4
Example : Triac power device
Device Solutions
Basic schematics
A1
A1
17
Classic Equations
SCR#2
(*) Equation de Poisson
Gate N
Gate N
2 q
SCR#1
p n N N a s
(n, p)
d
(*) Equation de continuité
A2
A2
(n, p) 1
t
q
J n, p U n, p
(n, p)
R_GN=100 Ohms
R_GN=1 Ohm
Current (A)
2
(*) Equation de transport
R_GN_T=100
Ohms
R_GN_T=1 Ohm
1,5
Jn, p q
(n, p)n, pq
Dn, p(n, p)
(n, p)
(n, p)
1
(*) Equation de la chaleur
Jn, p q
(n, p)n, p kn, pT (n, p) (n, p)T
(n, p)
0,5
0
0
1
2
3
4
Voltage (V)
5
6
7
8
T J
C Si
E (T )T
p
Si
(n, p)
Q
t
Ph Galy JP CNFM 2012
28/11.2012
Example : Beta Matrix
Device Solution
Matrix
Pw
Power device
Concept
Pw
Sub Matrix
Pw
N
P
N
P
N
N
P
N
P
N
P
P+
N+
P
N
P
N
P
N
N+
N
P+
P
N
P
N
P
P
N
P
N
P
N
N
P
N
P
N
P
Pw
Pw
Pw
Cross Section
Pw
P
18
A2
A1
A2
Pw
Pw
P+
Pwell
Pw
3D TCAD
N+
P+
N+
Pwell
P+
N+
Pwell
Nwell
Isotherm IV response
Current density extraction
3D TCAD
results
Current (A)
1.5
Extraction
point
1
0.
5
0
0
2
4
6
8 10
Voltage (V)
Ph Galy JP CNFM 2012
28/11.2012
Example : Beta Matrix & HC
Equations set
3D TCAD study
Device Solution
19
d
d
d
f (k,r,t )
f (k,r,t ) k k f (k,r,t ) r r f (k,r,t )
dt
t
dt
dt
F
(n, p) gi r (n, p) giun,p (n, p) k gi giCi
t
h
( n, p ) r (n, p ) v n , p C n , p
t
J n , p q( n , p )
( n, p ) U n , p
t
U n , p wn , p
1
3
S n , p J n , p E
(n, p )U T
q
2 t
q( n , p )
n,p
FA
“Hot”
Cross section
Ph Galy JP CNFM 2012
Zoom In
28/11.2012
Trigger Solution
Trigger Circuit :
Dynamic detection event in the ESD range time
Static detection event through threshold
Both detection
Optimize silicon area
Fast response
Low energy behavior
Designed for the ESD window
Ph Galy JP CNFM 2012
28/11.2012
20
ESD IP Solution
Before
SCR + SCR
After
MOSSWI+ diode
R&D differentiation : Before & After IP integration
Ph Galy JP CNFM 2012
Mosswi
R
C
R
SCR
SCR
C
28/11.2012
21
Example : HBM+MM+CDM+HMM
Power device + Dynamic Trigger
ESD IP Solution
R
D1
Dual SCR
P1
Silicon measurements
T
C
T
C
IO
T
C
VSS1
IO
T
C
VDD1
IO
VDD2
T
C
Clamp
T
C
VDD1
T
C
P2
R
T
C
New ESD network
Elementary Module
Modular approach
Ph Galy JP CNFM 2012
IO
Clamp
VDD2
VSS2
28/11.2012
22
ESD Gun
ESD protection strategy
Board/ Chip context
23
ESD GUN context
Energy stress: 30A at least
Digital/Analog/RF and multi powers/Dice
Thin & Thick oxide gate transistor
Multi chips / multi dice / multi balls
Flavors of substrate : Bulk or PD/FD SOI
External connectors/ PCB routing
Stress duration: 1ns rise time to 100ns
Two pins stressed contact or air discharge
Power off & Power on
Standard : IEC 61000-4-2
ESD Gun Co-design Challenge
Provide efficient power devices
Provide fast trigger circuit
Optimize : Silicon area,
leakage,
parasitic capacitance
Address all ESD standards (HBM/MM/CDM)
Avoid LU
Ph Galy JP CNFM 2012
28/11.2012
23
ESD CDM
ESD protection strategy
2
1
3
Development of
package model
Identification of the main
phenomenon involved
during stress
Current [A]
Ground plate
RTE
CPM
ST
L1
TEST
W
RAR
CDuC
t
Field plate
RCHR
G
1GW
Evaluation of protection
devices in time range of
CDM
Evaluation of full CDM
protection strategy on IO
4
Development of tools
devoted for CDM study
Static CDM
check on IP
Dynamic CDM
Check on IP block
Kelvin Pad
frame for
VFLTP &
VF TCS
VCD
M
Time [sec]
Basic schematic of the problem to simulate
• Pogo pin contribution
• Package contribution
• Metal contribution
• Design contribution
• Layout contribution
• Substrate contribution
Ph Galy JP CNFM 2012
24
28/11.2012
ESD CDM
ESD protection strategy
Macro IP
R&D collaboration
Global view of extractions & activities . Link with TDDB
Extract #1
@ 6 ps
Extract #2
@ 249 ps
Ph Galy JP CNFM 2012
Extract #3
@ 326 ps
Extract #4
@ 512 ps
28/11.2012
25
CDM silicon signatures
26
CDM silicon signatures & physical phenomenon :
Typical CDM silicon signatures identified
Physical mechanism : Snapback and/or dielectric breakdown
Examples of signatures see below
Backside view
Filament (hard fail)
Tong effect = Hole +
partial Snapback
Snapback
Snapback
Hole in gate
Drain side
Multi Holes in gate
Hole in gate (Soft fail)
Failure Analysis Item
&
associated expertises
Substrate current
Ph Galy JP CNFM 2012
28/11.2012
9-Apr-16
FOCUS
ESD RF & Beyond !
27
Ref : Dimitri Liten ICICDT 2010
Our target
Best Solution
Local clamp
STM C65 SCR+Diode
(15µm x 15µm)
30 GHz
400 MHz
How to reach the ESD/RF targets
2KV HBM for 20 GHz bandwidth at least
Ph Galy JP CNFM 2012
28/11.2012
ESD RF & Beyond !
Maxwell
Quadri vectors : Aν = (φ,A),
Lorenz gauge : ∂ν
Aν =
R&D collaboration
0
Faraday tensor : Fµν = ∂µ Aν - ∂ν Aµ
Maxwell equation: ∂µ Fµν = - 4п Jν
Vectors :
Silicon
Jν = (ρ,J)
E = -∇φ - ∂t A ,
B = ∇× A
Transport equations :Jn = q μn n (E + vn × B) + k T μn ∇. n
Coupled with Lorenz force
Jp = q μp p (E + vp × B) – k T μp ∇. p
Metal
Continuity equation : ∇· J = - ∂t ρ + U
Transport equation : J = σ.E + μH J × B
Coupled with Lorenz force
Ph Galy JP CNFM 2012
28/11.2012
28
ESD RF & Beyond : Minimize parasitic Capa
29
FEOL + BEOL parasitic capacitance calculation thanks to coupled equations for local
clamp solution
BEOL
Bandwith calculation
FEOL+BEOL extraction
FEOL+ BEOL capacitance
= 80 fF
FEOL
It’s possible to extract E, B fields into the structure (@10GHz)
E(V/m)
Ph Galy JP CNFM 2012
28/11.2012
ESD RF & Beyond !
30
Our target
Best Solution
Local clamp
STM C65 SCR+Diode
(15µm x 15µm)
New target
30 GHz
400 MHz
C40,32 demonstrators
How do to ?
Ph Galy JP CNFM 2012
28/11.2012
Beyond : Embedded protection in propagation line
31
Topology
E distribution
RF
Measurements
Model
Hdistribution
Jn distribuition
in Si substrate
Measure
Ph Galy JP CNFM 2012
28/11.2012
R&D collaboration
Metal behavior
32
Full 3D ESD device
Current density Time Evolution
Ph Galy JP CNFM 2012
28/11.2012
33
• Integration context
• Focus on ESD : Events to IP solution
• Package & 3D connections
•Tooling : Checkers & Builders
• Partners & collaborations
Ph Galy JP CNFM 2012
28/11.2012
Package & 3D connection
Complexity of package increases with technology node !
Several layers, material …
SOC, SIP ….
Pin number
1500 pins
QFP (Quad
Flat Package)
1 000 pins
QFN (Quad
Flat
No-leads)
500 pins
200pins
SOP (Small
Outline Package)
BGA (Ball Grid Array)
64pins
48pins
PGA (Pin Grid Array)
16pins DIL (Dual
In Line)
34
Ph Galy JP CNFM 2012
28/11.2012
34
SIP 3D interconnect
Example of contribution on signal Integrity
Cu pillar, Ball , TSV 3D interconnect
Multi substrate package layers
Interposer …..
35
32 nm stacked
on 65 nm Die
TSV
TSV
40GHz
35
Ph Galy JP CNFM 2012
28/11.2012
Transient domain
36
• DDR application
• To include BDPROG IO spice netlist
• Load => Memory + Memory Package (POP configuration)
Bump to RDL impact
• Bump RDL impact
IO:BDPROGMOBLPDDRSCARUDQP_URISO_SF_1V2_D
Q_FC_LIN_PHY
Zout=34Ω
ASRCN<6:0> = 0101000
ASRCP<6:0> = 1010101
Spectre models – Typical corners
output_package
input
W,L
IO Spice Netlist
TL model
Package
(SDRDQ2)
Vs
MSub
X pF
Freq = 500MHz
Vhigh = 1V
Ph Galy JP CNFM 2012
28/11.2012
37
• Integration context
• Focus on ESD : Events to IP solution
• Package & 3D connections
•Tooling : Checkers & Builders
• Partners & collaborations
Ph Galy JP CNFM 2012
28/11.2012
IP integration with Flexframe Tool
38
Integration
• Design & topology for example ESD IP
• Flex frame integration and generator tool
ESD
Design …
IPs
(schematic
+ block
layout)
IP IO Offer
Final Delivery
ANA
DIG
SUPPLY
Synchronicity
g
n
d
e
Mtop IO
pin
Special
v
d
d
e
LB IO
pin
STAND
.
Others
…
e
s
d
s
u
b
g
n
d
e
Flexframes
e
s
d
s
u
b
Ph Galy JP CNFM 2012
28/11.2012
CAD/TOPO/EC Checkers Tool
39
Check before/after IP development
• Database environment setup
• Topologic checks : DFM …
• Electric checks : PISI/ESD/ERC/Aging …
• Reports & waivers file
Macro level
Nano level
Ph Galy JP CNFM 2012
28/11.2012
I/O ring builder/checkerTool
40
IO Builder/Checker during development
• Builder/checker IO focused
• Multi engines & thread
• Data Model IP level
• Provide optimized robust solution
Proposed Solution
PLL example Area: 0.62 mm²
Area: 0.21 mm²
Ph Galy JP CNFM 2012
28/11.2012
41
• Integration context
• Focus on ESD : Events to IP solution
• Package & 3D connections
•Tooling : Checkers & Builders
• Partners & collaborations
Ph Galy JP CNFM 2012
28/11.2012
Partners & collaborations
R&D collaborations
• Universities & Laboratories
• Thesis (open positions )
• Internships
• Projects development
• CAD Providers
• National & European projects
• Consortium
Ph Galy JP CNFM 2012
28/11.2012
42
Thank You
Have a Nice Day
Do not hesitate to contact us
Ph Galy JP CNFM 2012
28/11.2012