Transcript Document

Introduction to
CMOS VLSI
Design
Lecture 2:
MIPS Processor Example
David Harris
Harvey Mudd College
Spring 2004
Outline
 Design Partitioning
 MIPS Processor Example
– Architecture
– Microarchitecture
– Logic Design
– Circuit Design
– Physical Design
 Fabrication, Packaging, Testing
2: MIPS Processor Example
CMOS VLSI Design
Slide 2
Activity 2
 Sketch a stick diagram for a 4-input NOR gate
2: MIPS Processor Example
CMOS VLSI Design
Slide 3
Activity 2
 Sketch a stick diagram for a 4-input NOR gate
VDD
A
B
C
D
Y
GND
2: MIPS Processor Example
CMOS VLSI Design
Slide 4
Coping with Complexity
 How to design System-on-Chip?
– Many millions (soon billions!) of transistors
– Tens to hundreds of engineers
 Structured Design
 Design Partitioning
2: MIPS Processor Example
CMOS VLSI Design
Slide 5
Structured Design
 Hierarchy: Divide and Conquer
– Recursively system into modules
 Regularity
– Reuse modules wherever possible
– Ex: Standard cell library
 Modularity: well-formed interfaces
– Allows modules to be treated as black boxes
 Locality
– Physical and temporal
2: MIPS Processor Example
CMOS VLSI Design
Slide 6
Design Partitioning
 Architecture: User’s perspective, what does it do?
– Instruction set, registers
– MIPS, x86, Alpha, PIC, ARM, …
 Microarchitecture
– Single cycle, multcycle, pipelined, superscalar?
 Logic: how are functional blocks constructed
– Ripple carry, carry lookahead, carry select adders
 Circuit: how are transistors used
– Complementary CMOS, pass transistors, domino
 Physical: chip layout
– Datapaths, memories, random logic
2: MIPS Processor Example
CMOS VLSI Design
Slide 7
Gajski Y-Chart
2: MIPS Processor Example
CMOS VLSI Design
Slide 8
MIPS Architecture
 Example: subset of MIPS processor architecture
– Drawn from Patterson & Hennessy
 MIPS is a 32-bit architecture with 32 registers
– Consider 8-bit subset using 8-bit datapath
– Only implement 8 registers ($0 - $7)
– $0 hardwired to 00000000
– 8-bit program counter
 You’ll build this processor in the labs
– Illustrate the key concepts in VLSI design
2: MIPS Processor Example
CMOS VLSI Design
Slide 9
Instruction Set
2: MIPS Processor Example
CMOS VLSI Design
Slide 10
Instruction Encoding
 32-bit instruction encoding
– Requires four cycles to fetch on 8-bit datapath
format
R
I
J
example
add $rd, $ra, $rb
beq $ra, $rb, imm
j dest
2: MIPS Processor Example
encoding
6
5
5
5
5
6
0
ra
rb
rd
0
funct
6
5
5
16
op
ra
rb
imm
6
26
op
dest
CMOS VLSI Design
Slide 11
Fibonacci (C)
f0 = 1; f-1 = -1
fn = fn-1 + fn-2
f = 1, 1, 2, 3, 5, 8, 13, …
2: MIPS Processor Example
CMOS VLSI Design
Slide 12
Fibonacci (Assembly)
 1st statement: n = 8
 How do we translate this to assembly?
2: MIPS Processor Example
CMOS VLSI Design
Slide 13
Fibonacci (Assembly)
2: MIPS Processor Example
CMOS VLSI Design
Slide 14
Fibonacci (Binary)
 1st statement: addi $3, $0, 8
 How do we translate this to machine language?
– Hint: use instruction encodings below
format
R
I
J
example
add $rd, $ra, $rb
beq $ra, $rb, imm
j dest
2: MIPS Processor Example
encoding
6
5
5
5
5
6
0
ra
rb
rd
0
funct
6
5
5
16
op
ra
rb
imm
6
26
op
dest
CMOS VLSI Design
Slide 15
Fibonacci (Binary)
 Machine language program
2: MIPS Processor Example
CMOS VLSI Design
Slide 16
MIPS Microarchitecture
 Multicycle marchitecture from Patterson & Hennessy
PCWriteCond
PC En
PCSource
PCWrite
ALUOp
Outputs
IorD
ALUSrcB
MemRead
ALUSrcA
Control
MemWrite
RegWrite
MemtoReg
Op
RegDst
IRWrite[3:0]
[5 : 0]
0
M
6
Instruction [5 : 0]
PC
0
M
u
x
1
Shift
left 2
8
Jump
address
1 u
x
2
Instruction
[31:26]
Address
Memory
MemData
Write
data
Instruction
[25 : 21]
Read
register 1
Instruction
[20 : 16]
Read
Read
register 2 data 1
Registers
Write
Read
register data 2
Instruction
[15 : 0]
Instruction
register
Instruction
[7 : 0]
Memory
data
register
0
M
Instruction u
x
[15 : 11]
1
0
M
u
x
1
A
B
Write
data
0
M
u
x
1
1
Zero
ALU ALU
result
ALUOut
0
1 M
u
2 x
3
ALU
control AL U C o ntro l
Instruction [5 : 0]
2: MIPS Processor Example
CMOS VLSI Design
Slide 17
Multicycle Controller
Instruction fetch
=
( Op
5
')
'L B
=
Op
or (
'S B
')
9
e)
- t yp
=R
Branch
completion
Execution
ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00
11
ALUSrcA =1
ALUSrcB = 00
ALUOp = 10
ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond
PCSource = 01
ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00
Jump
completion
12
PCWrite
PCSource = 10
p
(O
=
'S
B
')
(Op = 'L B ')
(Op
4
(Op = 'J')
Reset
Memory address
computation
Instruction decode/
register fetch
MemRead
ALUSrcA = 0
IorD = 0
IRWrite0
ALUSrcB = 01
ALUOp = 00
PCWrite
PCSource = 00
EQ
')
3
MemRead
ALUSrcA = 0
IorD = 0
IRWrite1
ALUSrcB = 01
ALUOp = 00
PCWrite
PCSource = 00
'B
2
MemRead
ALUSrcA = 0
IorD = 0
IRWrite2
ALUSrcB = 01
ALUOp = 00
PCWrite
PCSource = 00
=
1
MemRead
ALUSrcA = 0
IorD = 0
IRWrite3
ALUSrcB = 01
ALUOp = 00
PCWrite
PCSource = 00
(O
p
0
Memory
access
6
Memory
access
8
MemRead
IorD = 1
R-type completion
10
MemWrite
IorD = 1
RegDst = 1
RegWrite
MemtoReg = 0
Write-back step
7
RegDst = 0
RegWrite
MemtoReg = 1
2: MIPS Processor Example
CMOS VLSI Design
Slide 18
Logic Design
 Start at top level
– Hierarchically decompose MIPS into units
 Top-level interface
crystal
oscillator
2-phase
clock
generator
memread
memwrite
ph1
MIPS
processor
ph2
reset
adr
writedata
memdata
2: MIPS Processor Example
CMOS VLSI Design
8
8
8
external
memory
Slide 19
Block Diagram
PCWriteCond
PC En
PCSource
PCWrite
ALUOp
Outputs
IorD
ALUSrcB
MemRead
MemWrite
Control
ALUSrcA
RegWrite
MemtoReg
IRWrite[3:0]
Op
[5 : 0]
RegDst
0
M
6
Instruction [5 : 0]
PC
memwrite
0
M
u
x
1
Shift
left 2
8
Jump
address
Instruction
[25 : 21]
Memory
MemData
Write
data
Instruction
[20 : 16]
Instruction
[15 : 0]
Instruction
register
Instruction
[7 : 0]
Memory
data
register
memread
0
M
u
x
1
Read
register 1
0
M
Instruction u
x
[15 : 11]
1
Read
Read
register 2 data 1
Registers
Write
Read
register data 2
A
B
1
Write
data
0
M
u
x
1
Zero
ALU ALU
result
ALUOut
0
1 M
u
2 x
3
ALU
control AL U C o ntro l
Instruction [5 : 0]
controller
aluop[1:0]
alucontrol
alucontrol[2:0]
funct[5:0]
irwrite[3:0]
regwrite
iord
regdst
memtoreg
pcsource[1:0]
pcen
alusrcb[1:0]
alusrca
zero
op[5:0]
ph1
ph2
reset
adr[7:0]
datapath
writedata[7:0]
memdata[7:0]
2: MIPS Processor Example
CMOS VLSI Design
1 u
x
2
Instruction
[31:26]
Address
Slide 20
Hierarchical Design
mips
controller
alucontrol
datapath
standard
cell library
bitslice
inv4x flop ramslice
alu
fulladder or2
zipper
and2 mux4
nor2 inv nand2
mux2
tri
2: MIPS Processor Example
CMOS VLSI Design
Slide 21
HDLs
 Hardware Description Languages
– Widely used in logic design
– Verilog and VHDL
 Describe hardware using code
– Document logic functions
– Simulate logic before building
– Synthesize code into gates and layout
• Requires a library of standard cells
2: MIPS Processor Example
CMOS VLSI Design
Slide 22
Verilog Example
module fulladder(input a, b, c,
output s, cout);
a b c
a
b
cout
sum
carry
endmodule
s1(a, b, c, s);
c1(a, b, c, cout);
c
carry
sum
s
fulladder
cout
s
module carry(input a, b, c,
output cout)
assign cout = (a&b) | (a&c) | (b&c);
endmodule
2: MIPS Processor Example
CMOS VLSI Design
Slide 23
Circuit Design
 How should logic be implemented?
– NANDs and NORs vs. ANDs and ORs?
– Fan-in and fan-out?
– How wide should transistors be?
 These choices affect speed, area, power
 Logic synthesis makes these choices for you
– Good enough for many applications
– Hand-crafted circuits are still better
2: MIPS Processor Example
CMOS VLSI Design
Slide 24
Example: Carry Logic
 assign cout = (a&b) | (a&c) | (b&c);
Transistors? Gate Delays?
2: MIPS Processor Example
CMOS VLSI Design
Slide 25
Example: Carry Logic
 assign cout = (a&b) | (a&c) | (b&c);
g1
a
b
x
g2
a
c
g4
y
cout
g3
b
c
z
Transistors? Gate Delays?
2: MIPS Processor Example
CMOS VLSI Design
Slide 26
Example: Carry Logic
 assign cout = (a&b) | (a&c) | (b&c);
a
p1
c
c
a
n1
b
p2
p3 i3
n3 i1
b n2
b
a
a
b
p4
i4
p5
cn
n5
i2
n4
p6
cout
n6
Transistors? Gate Delays?
2: MIPS Processor Example
CMOS VLSI Design
Slide 27
Gate-level Netlist
module carry(input a, b, c,
output cout)
g1
wire
x, y, z;
x
g2
and g1(x, a,
and g2(y, a,
and g3(z, b,
or g4(cout,
endmodule
2: MIPS Processor Example
a
b
b);
c);
c);
x, y, z);
CMOS VLSI Design
a
c
g4
y
cout
g3
b
c
z
Slide 28
Transistor-Level Netlist
module carry(input a, b, c,
output cout)
wire
tranif1
tranif1
tranif1
tranif1
tranif1
tranif0
tranif0
tranif0
tranif0
tranif0
tranif1
tranif0
endmodule
i1, i2, i3, i4, cn;
n1(i1, 0, a);
n2(i1, 0, b);
n3(cn, i1, c);
n4(i2, 0, b);
n5(cn, i2, a);
p1(i3, 1, a);
p2(i3, 1, b);
p3(cn, i3, c);
p4(i4, 1, b);
p5(cn, i4, a);
n6(cout, 0, cn);
p6(cout, 1, cn);
2: MIPS Processor Example
a
p1
c
c
a
n1
CMOS VLSI Design
b
p2
p3 i3
n3 i1
b n2
b
a
a
b
p4
i4
p5
n5
i2
n4
cn
p6
cout
n6
Slide 29
SPICE Netlist
.SUBCKT CARRY A B C COUT VDD GND
MN1 I1 A GND GND NMOS W=1U L=0.18U AD=0.3P AS=0.5P
MN2 I1 B GND GND NMOS W=1U L=0.18U AD=0.3P AS=0.5P
MN3 CN C I1 GND NMOS W=1U L=0.18U AD=0.5P AS=0.5P
MN4 I2 B GND GND NMOS W=1U L=0.18U AD=0.15P AS=0.5P
MN5 CN A I2 GND NMOS W=1U L=0.18U AD=0.5P AS=0.15P
MP1 I3 A VDD VDD PMOS W=2U L=0.18U AD=0.6P AS=1 P
MP2 I3 B VDD VDD PMOS W=2U L=0.18U AD=0.6P AS=1P
MP3 CN C I3 VDD PMOS W=2U L=0.18U AD=1P AS=1P
MP4 I4 B VDD VDD PMOS W=2U L=0.18U AD=0.3P AS=1P
MP5 CN A I4 VDD PMOS W=2U L=0.18U AD=1P AS=0.3P
MN6 COUT CN GND GND NMOS W=2U L=0.18U AD=1P AS=1P
MP6 COUT CN VDD VDD PMOS W=4U L=0.18U AD=2P AS=2P
CI1 I1 GND 2FF
CI3 I3 GND 3FF
CA A GND 4FF
CB B GND 4FF
CC C GND 2FF
CCN CN GND 4FF
CCOUT COUT GND 2FF
.ENDS
2: MIPS Processor Example
CMOS VLSI Design
Slide 30
Physical Design
 Floorplan
 Standard cells
– Place & route
 Datapaths
– Slice planning
 Area estimation
2: MIPS Processor Example
CMOS VLSI Design
Slide 31
MIPS Floorplan
10 I/O pads
mips
(4.6 M2)
control
1500  x 400 
(0.6 M2)
zipper 2700  x 250 
datapath
2700  x 1050 
(2.8 M2)
10 I/O pads
1690
3500
5000 
10 I/O pads
wiring channel: 30 tracks = 240 
alucontrol
200  x 100 
(20 k2)
bitslice 2700  x 100 
2700 
3500 
10 I/O pads
5000
2: MIPS Processor Example
CMOS VLSI Design
Slide 32
MIPS Layout
2: MIPS Processor Example
CMOS VLSI Design
Slide 33
Standard Cells






Uniform cell height
Uniform well height
M1 VDD and GND rails
M2 Access to I/Os
Well / substrate taps
Exploits regularity
2: MIPS Processor Example
CMOS VLSI Design
Slide 34
Synthesized Controller
 Synthesize HDL into gate-level netlist
 Place & Route using standard cell library
2: MIPS Processor Example
CMOS VLSI Design
Slide 35
Pitch Matching
 Synthesized controller area is mostly wires
– Design is smaller if wires run through/over cells
– Smaller = faster, lower power as well!
 Design snap-together cells for datapaths and arrays
– Plan wires into cells
A
A
A
A
B
– Connect by abutment
A
A
A
A
B
• Exploits locality
A
A
A
A
B
A
A
A
A
B
• Takes lots of effort
C
2: MIPS Processor Example
CMOS VLSI Design
C
D
Slide 36
MIPS Datapath
 8-bit datapath built from 8 bitslices (regularity)
 Zipper at top drives control signals to datapath
2: MIPS Processor Example
CMOS VLSI Design
Slide 37
Slice Plans
 Slice plan for bitslice
– Cell ordering, dimensions, wiring tracks
– Arrange cells for wiring locality
2: MIPS Processor Example
CMOS VLSI Design
Slide 38
MIPS ALU
 Arithmetic / Logic Unit is part of bitslice
2: MIPS Processor Example
CMOS VLSI Design
Slide 39
Area Estimation
 Need area estimates to make floorplan
– Compare to another block you already designed
– Or estimate from transistor counts
– Budget room for large wiring tracks
– Your mileage may vary!
2: MIPS Processor Example
CMOS VLSI Design
Slide 40
Design Verification
 Fabrication is slow & expensive
– MOSIS 0.6mm: $1000, 3 months
– State of art: $1M, 1 month
 Debugging chips is very hard
– Limited visibility into operation
 Prove design is right before building!
– Logic simulation
– Ckt. simulation / formal verification
– Layout vs. schematic comparison
– Design & electrical rule checks
 Verification is > 50% of effort on most chips!
Specification
=
Function
=
Function
=
Function
=
Function
Timing
Power
Architecture
Design
Logic
Design
Circuit
Design
Physical
Design
2: MIPS Processor Example
CMOS VLSI Design
Slide 41
Fabrication & Packaging
 Tapeout final layout
 Fabrication
– 6, 8, 12” wafers
– Optimized for throughput, not latency (10 weeks!)
– Cut into individual dice
 Packaging
– Bond gold wires from die I/O pads to package
2: MIPS Processor Example
CMOS VLSI Design
Slide 42
Testing
 Test that chip operates
– Design errors
– Manufacturing errors
 A single dust particle or wafer defect kills a die
– Yields from 90% to < 10%
– Depends on die size, maturity of process
– Test each part before shipping to customer
2: MIPS Processor Example
CMOS VLSI Design
Slide 43