Lesson 5-2A PowerPoint
Download
Report
Transcript Lesson 5-2A PowerPoint
Glencoe Geometry Interactive Chalkboard
Copyright © by The McGraw-Hill Companies, Inc.
Developed by FSCreations, Inc., Cincinnati, Ohio 45202
Send all inquiries to:
GLENCOE DIVISION
Glencoe/McGraw-Hill
8787 Orion Place
Columbus, Ohio 43240
Lesson 5-1 Bisectors, Medians, and Altitudes
Lesson 5-2 Inequalities and Triangles
Lesson 5-3 Indirect Proof
Lesson 5-4 The Triangle Inequality
Lesson 5-5 Inequalities Involving Two Triangles
Example 1 Compare Angle Measures
Example 2 Exterior Angles
Example 3 Side-Angle Relationships
Example 4 Angle-Side Relationships
Determine which angle has the greatest measure.
Explore Compare the measure of 1 to the measures
of 2, 3, 4, and 5.
Plan
Use properties and theorems of real numbers
to compare the angle measures.
Solve
Compare m3 to m1.
By the Exterior Angle Theorem,
m1 m3 m4. Since angle measures
are positive numbers and from the definition
of inequality, m1 > m3.
Compare m4 to m1.
By the Exterior Angle Theorem, m1 m3 m4.
By the definition of inequality, m1 > m4.
Compare m5 to m1.
Since all right angles are congruent, 4 5.
By the definition of congruent angles, m4 m5.
By substitution, m1 > m5.
Compare m2 to m5.
By the Exterior Angle Theorem, m5 m2 m3.
By the definition of inequality, m5 > m2.
Since we know that m1 > m5, by the
Transitive Property, m1 > m2.
Examine The results on the previous slides show that
m1 > m2, m1 > m3, m1 > m4, and
m1 > m5. Therefore, 1 has the greatest
measure.
Answer: 1 has the greatest measure.
Determine which angle has the greatest measure.
Answer: 5 has the greatest measure.
Use the Exterior Angle Inequality Theorem to list all
angles whose measures are less than m14.
By the Exterior Angle Inequality Theorem, m14 > m4,
m14 > m11, m14 > m2, and m14 > m4 + m3.
Since 11 and 9 are vertical angles, they have equal
measure, so m14 > m9. m9 > m6 and m9 > m7,
so m14 > m6 and m14 > m7.
Answer: Thus, the measures of 4, 11, 9, 3, 2, 6,
and 7 are all less than m14 .
Use the Exterior Angle Inequality Theorem to list all
angles whose measures are greater than m5.
By the Exterior Angle Inequality Theorem, m10 > m5,
and m16 > m10, so m16 > m5, m17 > m5 + m6,
m15 > m12, and m12 > m5, so m15 > m5.
Answer: Thus, the measures of 10, 16, 12, 15 and
17 are all greater than m5.
Use the Exterior Angle Inequality Theorem to list all of
the angles that satisfy the stated condition.
a. all angles whose measures are less than m4
Answer: 5, 2, 8, 7
b. all angles whose measures are greater than m8
Answer: 4, 9, 5
End of Custom Shows
WARNING! Do Not Remove
This slide is intentionally blank and is set to auto-advance to end
custom shows and return to the main presentation.