Trigonometric Function Values of an Acute Angle - math-clix
Download
Report
Transcript Trigonometric Function Values of an Acute Angle - math-clix
Section 6.1
Trigonometric
Functions of Acute
Angles
Copyright ©2013, 2009, 2006, 2001 Pearson Education, Inc.
Objectives
Determine the six trigonometric ratios for a given acute
angle of a right triangle.
Determine the trigonometric function values of 30º, 45º,
and 60º.
Using a calculator, find function values for any acute
angle, and given a function value of an acute angle,
find the angle.
Given the function values of an acute angle, find the
function values of its complement.
Right Triangles and Acute Angles
An acute angle is an angle with measure greater than 0º
and less than 90º.
Greek letters such as (alpha), (beta), (gamma),
(theta), and (phi) are often used to denote an
angle.
We label the sides with respect to angles. The
hypotenuse is opposite the right angle. There is the
side opposite and the side adjacent to .
Hypotenuse
Side adjacent to
Side opposite
Trigonometric Ratios
The lengths of the sides of a right triangle are used to
define the six trigonometric ratios:
sine (sin)
cosine (cos)
tangent (tan)
cosecant (csc)
secant (sec)
cotangent (cot)
Hypotenuse
Side adjacent to
Side opposite
Trigonometric Function Values of an
Acute Angle
Let be an acute angle of a right triangle. Then the six
trigonometric functions of are as follows:
side opposite
sin
hypotenuse
hypotenuse
csc
side opposite
side adjacent to
cos
hypotenuse
hypotenuse
sec
side adjacent to
side opposite
tan
side adjacent to
side adjacent to
cot
side opposite
Example
In the triangle shown, find the six trigonometric function
values of (a) and (b) .
opp 12
a) sin
12
13
hyp 13
hyp 13
csc
opp 12
5
adj
5
cos
hyp 13
hyp 13
sec
adj
5
opp 12
tan
adj
5
adj
5
cot
opp 12
Example
In the triangle shown, find the six trigonometric function
values of (a) and (b) .
opp 5
hyp 13
a) sin
12
13
csc
hyp 13
opp 5
adj 12
cos
5
hyp 13
hyp 13
sec
adj 12
opp
5
tan
adj 12
adj 12
cot
opp
5
Reciprocal Functions
Note that there is a reciprocal relationship between pairs
of the trigonometric functions.
1
csc
sin
1
sec
cos
1
cot
tan
Example
4
3
4
Given that sin , cos , and tan ,
5
5
3
find csc , sec , and cot .
Solution:
csc
sec
1
4
5
5
4
1
1
3
cos
5
5
3
1
sin
1
cot
tan
1
3
4
4
3
Example
6
If sin and is an acute angle, find the other five
7
trigonometric function values of .
Solution:
Use the definition of the sine function that the ratio
6 opp
and draw a right triangle.
7 hyp
Use the Pythagorean equation to find
2
7 a. a2 b2 c2
a
49 36 13
6
2
2
2
a
6
7
a 13
a
a2 36 49
Example (cont)
Use the lengths of the three sides to find the other five
ratios.
7
6
csc
sin
6
7
13
cos
7
6
6 13
tan
13
13
7
7 13
sec
13
13
13
cot
6
Function Values of 45º
A right triangle with one 45º, must have a second 45º,
making it an isosceles triangle, with legs the same length.
Consider one with legs of length 1.
opp
1
2
sin 45º
0.7071
hyp
2
2
45º
2
1
45º
1
adj
1
2
cos 45º
0.7071
hyp
2
2
opp 1
tan 45º
1
adj 1
Function Values of 30º
A right triangle with 30º and 60º acute angles is half an
equilateral triangle. Consider an equilateral triangle with
sides 2 and take half of it.
1
sin 30º 0.5,
2
2 30º
60º
1
3
3
cos 30º
0.8660,
2
1
3
tan 30º
0.5774
3
3
Function Values of 60º
A right triangle with 30º and 60º acute angles is half an
equilateral triangle. Consider an equilateral triangle with
sides 2 and take half of it.
3
sin 60º
0.8660,
2
2 30º
60º
1
3
1
cos 60º 0.5,
2
3
tan 60º
3 1.7321
1
Example
As a hot-air balloon began to rise, the ground crew drove
1.2 mi to an observation station. The initial observation
from the station estimated the angle between the ground
and the line of sight to the balloon to be 30º.
Approximately how high was the balloon at that point?
(We are assuming that the wind velocity was low and that
the balloon rose vertically for the first few minutes.)
Solution:
Draw the situation, label the acute angle and length of
the adjacent side.
Example (cont)
opp
h
tan 30º
adj 1.2
1.2 tan 30º h
3
1.2
h
3
0.7 h
The balloon is approximately 0.7 mi, or 3696 ft, high.
Function Values of Any Acute Angle
Angles are measured either in degrees, minutes, and
seconds: 1º = 60´, 1´ = 60´´; referred to as the
DºM´S´´ form
61 degrees, 27 minutes, 42 seconds 61º 2742
or are measured in decimal degree form, expressing
the fraction parts of degrees in decimal form
61º 2742 61.45 1
Examples
Find the trigonometric function value, rounded to four
decimal places, of each of the following:
a) tan 29.7º
b) sec 48º
c) sin 84º1039
Solution:
Check that the calculator is in degree mode.
a) tan 29.7º 0.5703899297 0.5704
1
b) sec 48º
1.49447655 1.49445
cos 48º
c) sin 84º1039 0.9948409474 0.9948
Example
A window-washing crew has purchased new 30-ft
extension ladders. The manufacturer states that the
safest placement on a wall is to extend the ladder to 25 ft
and to position the base 6.5 ft from the wall. What angle
does the ladder make with the ground in this position?
Solution:
Draw the situation, label the hypotenuse and length of
the side adjacent to .
Example (cont)
6.5 ft
adj
cos
25 ft
hyp
0.26
Use a calculator to find the acute
angle whose cosine is 0.26:
74.92993786º
Thus when the ladder is in its safest position, it makes
an angle of about 75º with the ground.
Cofunction Identities
Two angles are complementary whenever the sum of
their measures is 90º. Here are some relationships.
sin cos 90º
90º –
cos sin 90º
tan cot 90º
cot tan 90º
sec csc 90º
csc sec 90º
Example
Given that sin 18º ≈ 0.3090, cos 18º ≈ 0.9511, and tan
18º ≈ 0.3249, find the six trigonometric function values of
72º.
sin 72º cos18º 0.9511
Solution:
cos 72º sin18º 0.3090
1
csc18º
3.2361
sin18º
tan 72º cot18º 3.0777
1
sec18º
1.0515
cot 72º tan18º 0.3249
cos18º
1
cot18º
3.0777
tan18º
sec 72º csc18º 3.2361
csc 72º sec18º 1.0515