No Slide Title

Download Report

Transcript No Slide Title

To solve an oblique triangle means to
find the lengths of its sides and the
measurements of its angles.
Theorem Law of Sines
For a triangle with sides a , b, c and opposite
angles  ,  ,  , respectively,
sin  sin  sin 


a
b
c
We use the Law of Sines to solve CASE 1
(SAA or ASA) and CASE 2 (SSA) of an
oblique triangle. The Law of Cosines is
used to solve CASES 3 and 4.
CASE 3: Two sides and the included
angle are known (SAS).
CASE 4: Three sides are known (SSS).
Theorem Law of Cosines
For a triangle with sides a , b, c and opposite
angles  ,  ,  , respectively.
c  a  b  2ab cos
2
2
2
b  a  c  2ac cos 
2
2
2
a  b  c  2bc cos
2
2
2
Solve the triangle: b  3, c  4,  40 (SAS)

3

a


40
4
a  b  c  2bc cos
2
2
2
a  3  4  234 cos 40
2
a  6.614933365
2
2
2
a  2.57


3
2.57
2
2
2
 b  a  c  2ac cos 

40
4
2
2
2
a c b
cos  
2ac
6.6149  4  3

 0.6622
2(2.57)(4)
2
2
  48.5

  180  40  48.5



  915
.

Solve the triangle: a  3,b  5, c  7 (SSS)

3
5

7
2
2
2
a  b  c  2bc cos

5 7 3
cos 
2(5)(7)
2
2
2
b c a
65 13
cos 
cos  
2bc
70 14

  218
.
2
2
2

5
3

a c b
cos  
2ac
2
2

218
.
2
7
2
2
2
3 7 5
33 11



2(3)(7)
42 14
  38.2
  180  21.8  38.2  120