Twierdzenbie Trachtenbrota

Download Report

Transcript Twierdzenbie Trachtenbrota

Trachtenbrot’s Theorem
The following problem is undecidable
Given: A sentence πœ‘ of first order
logic
Question: Is πœ‘ satisfiable in a finite
structure?
Theorem of Matyasevich
The following problem is undecidable
Given: A polynomial π‘Š 𝑛1 , 𝑛2 , … , π‘›π‘˜ of
multiple natural varibales and integer
coefficients
Ques: Does π‘Š have a zero, i.e., do there exist
natural numbers 𝑛1 , 𝑛2 , … , π‘›π‘˜
such that π‘Š 𝑛1 , 𝑛2 , … , π‘›π‘˜ = 0?
Proof:
Reduction of Hilbert’s 10th problem to the
problem is a given first order sentence is
satisfiable in the finite.
The form of Hilbert’s problem:
Given: Two multivariate polynomials π‘Š1 , π‘Š2 of
degree π‘Ÿ with all coefficients equal 1.
Question: Does the equation π‘Š1 = π‘Š2 have a
natural solution?
Reduction
β€’ For each variable 𝑛𝑖 in the equation we create
a unary relation symbol 𝑁𝑖
For each monomial
𝛼𝑖 = 𝑛1
π‘Ž1
β‹… … β‹… π‘›π‘˜
π‘Žπ‘˜
we use:
–A constant 𝑐𝑖
–An π‘Ÿ + 1-ary relation symbol 𝐴𝑖
A sentence πœ‘π‘– corresponding to 𝛼𝑖
βˆ€π‘₯0 π‘₯1 … π‘₯π‘Ÿ [𝐴𝑖 (π‘₯0 , π‘₯1 , … , π‘₯π‘Ÿ ) ↔
(𝑁1 π‘₯1 ∧ … ∧ 𝑁1 π‘₯π‘Ž1 ∧
𝑁2 π‘₯π‘Ž1 +1 ∧ … ∧ 𝑁2 π‘₯π‘Ž1 +π‘Ž2 ∧
…
π‘π‘˜ π‘₯βˆ‘π‘Žπ‘– βˆ’π‘Žπ‘˜ +1 ∧ … ∧ π‘π‘˜ π‘₯βˆ‘π‘Žπ‘– ∧
π‘₯1+βˆ‘π‘Žπ‘– = 𝑐𝑖 ∧
…
π‘₯π‘Ÿ = 𝑐𝑖 ∧
π‘₯0 = 𝑐𝑖 )]
That sentence enforces
π‘Ž1
𝐴𝑖 = |𝑁1 |
π‘Žπ‘˜
β‹… … β‹… |π‘π‘˜ |
And additionally the relation 𝐴𝑖
contains only tuples beginning with 𝑐𝑖 .
We add a 2π‘Ÿ + 2-ary relation
symbol 𝐡 and a sentence β
𝑐𝑖 β‰  𝑐𝑗 ∧
𝑖≠𝑗
πœ‘1 ∧ πœ‘2 ∧ β‹― πœ‘π‘  ∧
"𝐡 is a 1-1 mapping
From the set of all tuples in relations 𝐴𝑗 related to π‘Š1
Onto the set of all tuples in relations 𝐴𝑗 related to π‘Š2 "