Note: IPG= Introductory Physical Geology Video Exercises Crater Lake

Download Report

Transcript Note: IPG= Introductory Physical Geology Video Exercises Crater Lake

Illustrating Geology with Customized Video in Introductory Geoscience Courses
Jerry F. Magloughlin
Colorado State University
For the past several years, I have been creating short videos for use in large-enrollment introductory physical
geology classes. The motivation for this project included 1) lack of appropriate depth in existing videos, 2)
engagement of non-science students, 3) student indifference to traditional textbooks, 4) a desire to share the visual
splendor of geology through virtual field trips, and 5) a desire to meld photography, animation, narration, and
videography in self-contained experiences.
These (HD) videos are information-intensive but short, allowing a focus on relatively narrow topics from numerous
subdisciplines, incorporation into lectures to help create variety while minimally interrupting flow and holding
students’ attention, and manageable file sizes. Nearly all involve one or more field locations, including sites
throughout the western and central continental U.S., as well as Hawaii, Italy, New Zealand, and Scotland.
The limited scope of the project and motivations mentioned preclude a comprehensive treatment of geology.
Instead, videos address geologic processes, locations, features, and interactions with humans. The videos have been
made available via DVD and on-line streaming.
Such a project requires an array of video and audio equipment and software, a broad knowledge of geology, very
good computing power, adequate time, creativity, a substantial travel budget, liability insurance, elucidation of the
separation (or non-separation) between such a project and other responsibilities, and, preferably but not essentially,
the support of one’s supervisor/ academic unit. Involving students in such projects entails risks, but involving
necessary technical expertise is virtually unavoidable.
In my own courses, some videos are used in class and/or made available on-line as simply another aspect of the
educational experience. Student response has been overwhelmingly positive, particularly when expectations of
students regarding the content of the videos is made clear, and appropriate materials accompany the videos.
Retention of primary concepts presented within videos is at least as high as ordinary lecture material, and student
questions reference the videos more than any other matter. Use of the videos has created more variety in the course,
a better connection to real world geology, and a more palatable experience for students who increasingly describe
themselves as visual learners.
[email protected], 970-290-6630 (cell)
Volume 1
Volume 2
Background: I have been teaching introductory level physical geology courses for over 20 years, and the
challenges of getting non-science students engaged, keeping the course rigorous, staying up to date with
changes in the field and teaching technologies, and monitoring changes in the student population itself have
always been interesting to me. After attempting to collect commercial video for use in the classroom, I realized
that none of it was geared specifically to the needs of the college level classroom. Thus, this project began.
Volume 3
(tentative list)
Mass Movement (2)
Desert Geology (2)
San Andreas Fault
Hawaiian Hot Spot
Hawaiian Lava Flows
Aeoli Islands, Italy
Mining
Rio Grande Rift
Geology of Wine
Fossils/fossilization
Sedimentary rocks & features
Mineralogy
Mississippi River
LOCATIONS FILMED
U.S., Italy, Scotland, New Zealand
Washington, Oregon, California, New Mexico,
Arizona, Colorado, Utah, Wyoming, North
Dakota, South Dakota, Nebraska, Kansas,
Oklahoma, Texas, Minnesota, Iowa, Missouri,
Illinois, Hawaii
Planned: Louisiana
Suggestions welcome.
Subject Categories
Note: IPG= Introductory Physical Geology
• Famous geologic localities (Mount Etna, Barringer Meteorite Crater)
Motivations
1) Getting students more engaged
2) Evolving past 19th century lecture technology
(projecting photos)
3) Showing the grandeur of Earth’s geology
4) Supplementing lecture without disrupting it
5) Bringing geology to the students
6) Unifying field examples, animations, and scale
7) Providing topics for in-class discussion
8) Providing yet another avenue for learning
(conveying sight, sound, smell)
9) Demonstrating the relevance of geology
10) Conveying earth’s activity, and student’s
stake in geologic processes
• Famous geologic events (Vesuvius A.D. 79, Mount Mazama/Crater Lake)
• General geologic features and processes (Gneiss, lava flows, glaciation)
• Humans and geology (Battle of Monte Cassino, Jade, Wine, Mining)
• Tectonic scale processes (Hawaii, Rio Grande Rift, Alpine Fault Zone)
Videos combine narrated and hosted visits to the geology at
a level appropriate for university physical geology courses.
They combine maps, animations, illustrations, aerial views,
etc. in 3-7 minute videos.
Petrified wood in New Zealand
Video Exercises
Crater Lake: Caldera in the Cascades
Introduction
One of the largest volcanic eruption of the last several tens of thousands of years occurred in Oregon, when a violent eruption
of a volcano dubbed ‘Mount Mazama’ occurred. The collapse of Mount Mazama formed a classic example of a geologic feature
called a caldera. Crater Lake is the deep, picturesque lake now occupying this caldera.
In this video, you’ll see the many sides of Crater Lake, learn about the dramatic eruption 8000 years ago leading to the
formation of the caldera, and see some of the features around Crater Lake, and even learn what the future likely holds with
respect to renewed eruptions.
Production (staff of ~4)
1) Research, logistics, permissions
2) Filming on location
Key Concepts
 Volcanoes are not forever. Either they can be eroded away, or sometimes, in major eruptions, they can collapse to form giant
depressions called calderas.
 Crater Lake, one of the U.S. National Park, formed inside the caldera formed during a giant eruption 8000 years ago.
 It’s likely that even after a cataclysmic eruption, further eruptions are possible, and it’s important to realize that in volcanically
active areas, we are only seeing a snapshot in time of the evolution of such areas.
3) Downloading (Mac G5, Final Cut Pro)
4) Voice-overs
Terms
5) Animations (Motion, Vue, and others)
Mount Mazama, Caldera, Pyroclastic cloud, Flows, Eruption, Welded tuff, Pumice, Wizard Island, Phantom Ship
1) They do not replace lecture nor the lecturer.
2) They cover a wide range of subjects—many subtopics in IPG.
3) They are guided tours—humans relate to humans.
4) They supplement or elaborate on topics and examples
commonly used in IPG.
5) They are content rich! May require prior (non-general)
knowledge.
6) Examples where sound and motion are used to advantage.
7) Animations used for invisible or 4D processes.
8) Focus on the tangible; field settings.
Exercises accompanying the videos
Philosophy
VIDEO GOES HERE
6) Score
Test Yourself
1) Which of the following is true about Crater Lake?
A. Crater Lake is an ancient lake, dating back to the Cretaceous.
{Sorry; Crater Lake is actually very young—less than 8000 years old.}
B. Crater Lake is the deepest lake in the U.S.
{Right. It’s the deepest lake in the U.S., and eighth deepest in the world.}
C. Crater Lake formed when volcanic materials dammed a river.
{Sorry; Crater Lake occupies a depression formed as a result of a massive eruption.}
(and others…)
Description or explanation
Matching:
Discussion Questions
7) Final editing
Term or phrase
Mountain that erupted to resulting in the formation of Crater
Lake
Mount Mazama
Depression formed by inward collapse of a volcano
caldera
Magma occupied this, prior to eruption
magma chamber
Type of eruption that led to caldera formation
Plinian eruption
Hot volcanic materials that become a glassy rock
welded tuff
50-60 cubic kilometers of ______ was removed from the
magma chamber
magma
Types of soils that pumice create
poor
Cinder-cone topped island within Crater Lake
Wizard Island
Old volcanic rocks that form an island within Crater Lake
Phantom Ship
State in which Crater Lake is found
Oregon
Use & experiences
1) Shown in class mid-lecture
2) Assigned via internet (Freeman portal),
where they are accompanied by introductions
and questions, and attempt to foster broader
discussions on related topics. 
3) Fun, informative, relevant break in lecture
4) Excellent feedback.
Have a suggestion for a future
topic? Write it here, or call me at
the above number if you’d like
to discuss:
1. Why do you think a caldera is the natural result of very large, rapid volcanic eruptions? Think about what types of cavities or
‘holes’ can exist within the earth.
2. Suppose a Mount Mazama type eruption were to occur today, somewhere on earth. What would be the consequences to the
landscape, the climate, and to humans living nearby and elsewhere on earth?
Links & for more information
National Park Service web page: http://www.nps.gov/archive/crla/home.htm
U.S.G.S. web page regarding the mapping of the bottom of Crater Lake, and a nice ‘fly-by’ through the lake:
http://geopubs.wr.usgs.gov/dds/dds-72/index.htm

With gratitude and special thanks to W.H. Freeman, especially Valerie Raymond, Amy Thorne, the entire Baruth family(!), Anthony Palmiotto, and Susan & Scott
Want to see an example?
www.jfmgeosciences.com/Rockfall.mov