Earthquake energy balance
Download
Report
Transcript Earthquake energy balance
(Introduction to) Earthquake Energy Balance
• Mechanical energy, surface energy and the Griffith criteria
• Seismic energy and seismic efficiency
• The heat flow paradox
• Apparent stress drop
The simplistic view
Earthquake energy balance: related questions
• Are faults weaker or stronger than the surrounding crust?
• Do earthquakes
release most, or just a
small fraction of the
strain energy that is
stored in the crust?
Earthquake energy balance: Griffith criteria
The static frictionless case:
U UM US (UA UE ) US
• UM is the mechanical energy.
• UA is the potential energy of the
external
load applied on the system
boundary.
• UE is the internal elastic strain
energy stored in the medium
• US is the surface energy.
dU dc 0
crack extends if:
crack at equilibrium if dU dc 0
dU dc 0
crack heals if:
Earthquake energy balance: dynamic shear crack
Dynamic shear crack:
U UA UE US UK UF
Here, in addition to UA, UE and US:
• UK is the kinetic energy.
• UF is thework done against friction.
During an earthquake, the partition of energy (after less before) is
as follows:
ES UK UA UE US UF ,
where ES is the radiated seismic energy.
Earthquake energy balance: dynamic shear crack
Since earthquake duration is so small compared to the inter
seismic interval, the motion of the plate boundaries far from the
fault is negligible, and UA=0. Thus, the expression for the
radiated energy simplifies to:
ES UE US UF .
Question: what are the signs of UE, US and UF?
U E 0
U S 0
U F > 0
Let us now write expressions for UE , US and UF .
Earthquake energy balance: elastic strain energy
To get a physical sense of what UE is, it is useful to consider the
spring-slider analog.
The reduction in the elastic strain
energy stored in the spring during
a slip episode is just the area
under the force versus slip curve.
For the spring-slider system, UE is equal to:
F1 F2
UE
u.
2
Earthquake energy balance: elastic strain energy
Similarly, for a crack embedded within an elastic medium, UE is
equal to:
UE
1 2
2
uA,
where 1 and 2 are initial and final stresses, respectively, and the
minus sign indicates a decrease in elastic strain energy.
Earthquake energy balance: frictional dissipation and surface
energy
The frictional dissipation:
UF (t) F (t)Vdt,
where F is the friction, V is sliding speed, and t is time. Frictional
work is converted mainly to heat.
The surface energy:
US 2A,
where is the energy per unit area required to break the atomic
bonds, and A is the rapture dimensions. Experimental studies
show that is very
small, and thus surface energy is very small
compared to the radiated energy (but not everyone agrees with
this argument).
Earthquake energy balance: the simplest model
Consider the simplest model, in
which the friction drops
instantaneously from 1 to 2.
In such case: F=2, and we
get:
2
ES 1
uA.
2
Earthquake energy balance: seismic efficiency
We define seismic efficiency, , as the ratio between the seismic
energy and the negative of the elastic strain energy change, often
referred to as the faulting energy.
ES
,
UE
which leads to:
1 2
,
1 2 1 2
with being the static stress drop. While the stress drop may be
determined from seismic data, absolute stresses may not.
Earthquake energy balance: seismic efficiency
u
CG ,
L˜
where G is the shear modulus, C is a geometrical constant, and
(the tilde) L is the rupture characteristic length.
The static stress drop is equal to:
The characteristic rupture
length scale is different for
small and large earthquakes.
For small earthquakes, L˜ r and C 7 16. Combining this with the
expression for seismic moment we get:
16 3
M r .
7
Both M and r may be inferred from seismic data.
Earthquake energy balance: seismic efficiency
Stress drops vary between 0.1
and 10 MPa over a range of
seismic moments between 1018
and 1027 dyn cm.
Figure from: Schlische et al., 1996
Earthquake energy balance: seismic efficiency
constraints on absolute stresses: In a hydrostatic state of stress,
the friction stress increases with depth according to:
F (z) (c w )gz,
where is the coefficient of friction, g is the acceleration of gravity,
and c and w are the densities of crustal rocks and water,
respectively.
Laboratory experiments show:
0.6.
Byerlee, 1978
Earthquake energy balance: seismic efficiency
Using:
, the coefficient of friction = 0.6
c, rock density = 2600 Kg m-3
w, water density = 1000 Kg m-3
g, the acceleration of gravity = 9.8 m s-2
D, the depth of the seismogenic zone, say 12x103 m
We get an average friction of:
(c w )gD
2
56MPa,
and the inferred seismic efficiency is:
0.1.
1 2
Earthquake energy balance: seismic efficiency
So, the radiated energy makes only a small fraction of the energy
that is available for faulting.
Based on this conclusion a strong heat-flow anomaly is expected
at the surface right above seismic faults.
Earthquake energy balance: the heat flow paradox
At least in the case of the San-Andreas fault in California, the
expected heat anomaly is not observed.
A section perpendicular
to the SAF plane:
Figure from: Scholz, 1990
The disagreement between the expected and observed heat-flow
profiles is often referred to as the HEAT FLOW PARADOX.
Earthquake energy balance: the heat flow paradox
A section parallel to the SAF plane:
Figure from: Scholz, 1990
Earthquake energy balance
The assumptions underlying the ''simple model'' are:
• Instantaneous drop from static to kinetic friction, and constant
friction during slip.
• Uniform distribution of slip and stresses.
• Zero overshoot.
• Constant sliding velocity.
• No off fault deformation.
The first point means that continuity is violated...
Earthquake energy balance
Other conceptual models:
constant friction
slip weakening
quasi-static
• The simple model.
• The slip-weakening model. Significant amount of energy is
dissipated in the process of fracturing the contact surface. In the
literature this energy is interchangeably referred to as the breakup energy, fracture energy or surface energy.
• A silent (or slow) earthquake - no energy is radiated.
Earthquake energy balance
In reality, things are probably more complex than that.
We now know that the distribution of slip and stresses is highly
heterogeneous, and that the source time function is quite
complex.
Earthquake energy balance: radiated energy versus seismic
moment and the apparent stress drop
Radiated energy and seismic moment of a large number of
earthquakes have been independently estimated. It is interesting
to examine the radiated energy and seismic moment ratio.
Figure from: Kanamori, Annu. Rev. Earth Planet. Sci., 1994
Earthquake energy balance: radiated energy versus seismic
moment and the apparent stress drop
Remarkably, the ratio of
radiated energy to seismic
moment is fairly constant
over a wide range of
earthquake magnitudes.
Figure from: Figure from Kanamori and
Brodsky, Rep. Prog. Phys., 2004
Earthquake energy balance: radiated energy versus seismic
moment and the apparent stress drop
What is the physical interpretation of the ratio ES to M0? Recall
that the seismic moment is:
M0 GuA,
and the radiated energy for constant friction (i.e., F = 2):
ES
1 2
2
uA.
Thus, ES/M0 multiplied by the shear modulus, G, is simply:
E S 1 2
G
.
M0
2
This is often referred to as the 'apparent stress drop'.