INTRODUCTION TO CHEMOTHERAPEUTIC DRUGS
Download
Report
Transcript INTRODUCTION TO CHEMOTHERAPEUTIC DRUGS
Chapter 38
Introduction To
Chemotherapeutic Drugs
Brief History of
Chemotherapeutic Drugs
1910 Ehrlich Arsphnamine(砷凡纳明 )
chemotherapy
1929 Fleming
1940 Florey and Chain
Penicilin
1935 Domagk Prontosil(百浪多息)
1960’s β-Lactam antibiotics
1970’s Fluoroquinolones
1980’s New Macrolides
Paul Ehrlich
青霉素发明者、英国科学家
弗莱明在他的实验室内
澳大利亚病理学家霍华德.弗罗里因进行
青霉素化学制剂的研究,而与弗莱明
1945年诺贝尔生理学和医学奖
Domagk
Relationship between pathogen ,
chemotherapeutic drugs and patients
host
Antimicrobial action
Antimicrobial agents
mycrobacterium
resistance
Several Terms related to Chemotherapy
Antimicrobial drugs(Antibacterial drugs, antifungal
drugs, antiviral drugs)
Chemotherapy
Antibacterial drugs
Antibiotics
Antibacterial spectrum
Antibacterial activity
Minimal inhibitory concentration (MIC)
Minimal bactericidal concentration (MBC)
Bacteriostatic drugs
Bactericidal drugs
Chemotherapeutic index(CI)
Post-antibiotic effect ( PAE )
Mechanism of action of the
Antibacterial Agents
Inhibiting the biosynthesis of the cell wall
β-lactam
Increasing the permeability of the
cytoplasmic membrane
Aminoglycosides
Imidazoles(miconazole, ketoconazole)
Polymixins
Amphotericin B/nystatin
Mechanism of action of
Antimicrobial Agents
Inhibition
of protein synthesis
Aminoglycosides
Tetracyclines
Chloramphenicol
Macrolides
Clindamycin
Mechanism of action of
Antimicrobial Agents
Interfering
the metabolism of
nucleotides and folic acid
Rifampicin
Quinolones
Sulfonamides
Resistances of Bacteria
Reasons
Antibiotics abuse
Classification
Intrinsic
resistance
Acquired resistance
Antibiotics are routinely added to
feed and water to prevent disease
and to promote growth in food
animals..
Mechanism of Bacterial Resistance
Alteration of membrane permeability
Production of Inactivating Enzyme
β-lactamase
Adenylase, phosphorylase, acetyltransferase
Alteration of target for the drugs
Active efflux system
Alteration of the metabolism route
Bacterial resistance to
antimicrobial agents
ESBLs: extended spectrum β-Lactamases(超广谱
β-内酰胺酶)
P.aeruginosa(铜绿假单胞菌)
MRSA: Methicillin resistant Staphylococcus
aureus(耐甲氧西林的金黄色葡萄球菌)
VRE: Vancomycin resistant Enterococci(耐
万古霉素的肠球菌)
Principles of antibacterial use
Basic principles
Diagnosis
Rational
use
Newborn
Pregnancy
Elderly
Principles of antibacterial use
Antimicrobial prophylaxis
Surgical
prophylaxis
Infectious
endocarditis
Trauma, burn
operation
Nonsurgical
Rheumatic
prophylaxis
fever
Epidemic meningitis
Malaria, Tuberculosis
Principles of antibacterial use
Antimicrobial agents combination
Drug categories
1.β-Lactam antibiotics
2. Aminoglycosides
3. Tetracyclines, macrolide ,chloramphenicol
4. Sulfonamides
1+2: Synergism
1+3:antagonism
2+3:synergism or plus
3+4: plus
Synergetic mechanism of
combination antibacterial therapy
Affect different component of the same
mechanism
Changing the permeability of the
cytoplasmic membrane or the cell wall
Inhibiting the inactiving enzyme of
antibacterial drugsInhibiting the different
resistant microbial population
Rationale for combination
antibacterial therapy
To Provide broad-spectrum empirical
therapy in seriously ill patients
Serious infection that can not be controlled by
one drug
To decrease the emergence of resistant strains
To decrease dose-related toxicity
Meningitis and osteomyelitis caused by
bacterial infection
Principles of antibacterial use
Misuse
Virus
infection
Unknown fever
Topical use
Improper prophylaxis and combination
Chapter 39
β-Lactam Antibiotics
Classification
Penicillins
Cephalosporins
Other β-Lactam drugs
Carbapenems(碳青霉烯类)
Cephamycins(头霉素类)
Oxacephalosporins (氧头孢烯类)
Monolactums(单环β-内酰胺类)
β-Lactamase inhibitors( β-内酰胺酶抑制剂)
Mechanism of action
Inhibition
of bacterial cell wall
synthesis
Target:
PBPs(penicillin-binding
proteins)
Cell-wall
autolytic enzyme
Mechanism of resistance
Inactivation of drug by β-lactamase
Trapping mechanism
Modification of PBPs
Impaired penetration of drug to target
PBPs
Active efflux system
Absence of autolysins
Penicillins
History
Basic
structure: 6-APA
Classification
Natural
penicillins
Semisynthesized penicillins
Penicillin G
Pharmacokinetics
Absorption
Distribution
Excretion
T1/2=0.5h~1h
probenecid
90%
tubular secretion
10% glomerular filtration
Benzathine benzyl penicillin
Procaine benzyl penicillin
Penicillin G
Antimicrobial activity
Gram-positive cocci
Streptococci
,pneumococci , staphylococci
Gram-positive
rods
Bacillus
anthracis, diphtheriae,
clostridium tetani
Gram-negative
cocci
Meningococci, diplococcus gonorrhoeae
Spirochete
梅毒螺旋体,
leptospira
Clinical uses
First choice for the following infections
Infection caused by streptococci,
pneumococci, meningococci etc
Infection caused by spirochetes
Infection caused by gram-positive rods
Adverse reactions
Allergic
reactions
Common:
urticaria, fever, angioneurotic edema,
eosinophilia, hemolytic anemia
Severe: anaphylactic shock
Herxheimer
reaction
Adverse reactions
Allergic reactions
Reason:degraded products of penicillin
Prevention:
History of allergic reactions
Skin test
Epinephrine
Semi-synthesized penicillins
Acid-resistant penicillins
Penicillinase-resistant penicillins
Extended-spectrum penicillins
Extended-spectrum penicillins against
P.aeruginosa
Penicillins against gram-negative
bacteria
Acid-resistant penicillins
Drugs: penicillin V, phenethicillin(非奈西林)
Character
Orally effective, not resist β-Lactamase
Lower potency than penicillin G
• Clinical uses: moderate infections
• Adverse reactions: allergic reaction
Penicillinase-resistant
penicillins
Drugs:methicillin(甲氧西林)oxacillin(苯唑西林),
cloxacillin(氯唑西林), dicloxacillin(双氯西林)
flucloxacillin(氟氯西林)
Character: acid-resistant/ penicillinaseresistant / lower potency than penicillin G
Clinical use
Infection caused by penicillin-resistant
staphylococci
Extended-spectrum penicillins
Ampicillin, amoxicillin, pivampicillin
Oral effective, susceptible to β-Lactamase
Broad
spectrum: G- / G+ <penicillin
No effect on P.aeruginosa
Clinical uses: infection caused by
gram-negative rods
Extended-spectrum penicillins
Ampicillin
Not
completely absorbed ,
Effective on G To G+: <penicillin
Clinical use: G- infection
F low
Extended-spectrum penicillins
Amoxycillin
Absorbed well , F high
G – infection
Meningitis
Upper
respiratory infection
Urinary tract infection
H.p infection
Extended-spectrum Penicillins
against P.aeruginosa
•
Carbenicillin, sulbencillin, ticarcillin,
furbencillin, piperacillin, mezlocillin
Character:
• Wide spectrum and more activity on P.aeruginosa
• Not acid and β-lactamase resistant
• Usually in combination with aminoglycosides
Extended-spectrum Penicillins
against P.aeruginosa
Carbenicillin
activity on G- and P.aeruginosa
Concentration in CSF is low
Mainly used to treat P.aeruginosa
infection in burn patients
High
Piperacillin
Effective on anaerobes
Concentration
in CSF is high
Penicillins against gramnegative bacteria
Mecillinam(美西林), temocillin(替莫西
林) , pivmecillinam(匹美西林)
Narrow-spectrum: mainly on G- rods
β-Lactamase resistant
No effect on P.aeruginosa
Treatment of infections caused by Grods
Cephalosporins
Chemistry:
7-ACA
Classification: four generations
First-generation
cephalosporins
Second- generation cephalosporins
Third-generation cephalosporins
Fourth- generation cephalosporins
First-generation cephalosporins
Cefalothin
Cefaloridine
Cefaloglycin
Cefalexin
Cefazolin
Cefradine
Cefacetrile
Cefapirin
Cefadroxil
头孢噻吩——先锋I
头孢噻啶——先锋II
头孢来星——先锋III
头孢氨苄——先锋IV
头孢唑啉——先锋V
头孢拉定——先锋VI
头孢乙氰——先锋VII
头孢匹林——先锋VIII
头孢羟氨苄
First-generation cephalosporins
Common characters:
Activity on
gram-positive bacteria:
first>second>third
Activity on gram-negative bacteria:
first<second<third
No effect on P. aeruginosa and anaerobes
Stability to β-Lactamase produced by gramnegative rods: first<second<third
Stable to β-Lactamase produced by gram-positive
bacteria
Renal toxicity: first>second>third
First-generation
cephalosporins
Clinical
uses
• Penicillin-resistant staphylococcal
infection
• Minor to moderate infections caused by
sensitive bacteria
Second-generation
cephalosporins
Drugs
Cefamandole(头孢孟多),
Cefuroxime(头孢呋辛)
Cefaclor(头孢克洛,希刻劳)
Second-generation
cephalosporins
Common characters
More active on gram-negative bacteria
Less active on gram-positive bacteria
More stable to β-Lactamase produced by
gram-negative rods
Some are effective on anaerobes
No effect on P. aeruginosa
Less renal toxicity
Second-generation
cephalosporins
Clinical
uses
• Gram-negative bacteria infections:
first choice
• Anaerobic infections
Third-generation
cephalosporins
Ceftriaxone (头孢曲松,罗氏芬)
Ceftazidime (头孢他定)
Cefoperazone (头孢哌酮)
Cefotaxime
(头孢噻圬)
Third-generation
cephalosporins
Common characters
• Much more active on gram-negative bacteria
• To gram-positive bacteria: third<second<first
• Stable to extended β-Lactamase produced by
gram-negative bacteria
• Effective on anaerobes and P.aeruginosa
• No renal toxicity
• Penetrating body fluids and tissues well
Third-generation
cephalosporins
Clinical
uses
a wide variety of serious infections
caused by organisms that are
resistant to most other drugs
Fourth- generation
cephalosporins
•
Cefpirome(头孢匹罗),cefepime(头孢吡圬),
cefclidin(头孢利定)
Character:
• Enhanced antimicrobial activity and broader
spectrum
• Stable to most β-lactamase
• More activity on gram-positive cocci
Clinical uses:
• infections caused by organisms that are resistant
to third-generation cephalosporins
一、二、三代头孢作用比较
一代
二代
三代
+++
++
+
+
++
+++
绿脓杆菌
-
-
有效
厌氧菌
-
有效
有效
+++
++
+
+++
+++
-
G+
G
-
对-内酰胺 G+ +++
酶稳定性 G- ++
肾毒性
Side effect of cephalosporins
Allergic effect
Gastrointestinal reactions
Renal toxicity
Other : bleeding
Disulfiram-like effect(双硫仑反应)
Other β-Lactam drugs
Carbapenems(碳青霉烯类)
The most important antimicrobial agents
in 1990’s
Wide spectrum and high activity
Resistant to most β-Lactamase
(including ESBLs and cephalosporinase)
Carbapenems
Thienamycin(硫霉素)
Imipenem(亚胺培南)
Imipenem-cilastatin:tienam(泰能)
Meropenem(美罗培南)
Panipenem(帕尼培南)
Imipenem-cilastatin:tienam
Susceptible
to acid
iv
Treatment of severe infections
Contradications:
CNS
disorder
Baby less than 3 months
Renal dysfunction
Cephamycins (头霉素类)
Cefoxitin(头孢西丁)
Similar to second-generation cephalosporins
More activity on anaerobes
β-Lactamase resistant
High concentration in CSF
Treatment of mixed anaerobic and aerobic
infections
Oxacephalosporin(氧头孢烯类)
Latamoxef(拉氧头孢), Flomoxef(氟
氧头孢)
Higher activity on anaerobes (especially
Bacteroids fragilis) than third-generation
cephalosporins
Well resistant to manyβ-Lactamase
Adverse reactions: PLT / disulfiram-like
effect
Monobactams
Aztreonam(氨曲南), carumonam(卡芦莫南)
No effect on gram-positive bacteria and
anaerobes
High activity on gram-negative bacteria
No cross-allergic reaction with penicillin
Penicillin-allergic patients tolerate well
Low toxicity
β-Lactamase inhibitors
Clavulanic
acid
Sulbactam
tazobactam
β-Lactamase inhibitors
Weak antimicrobial action
Protect β-lactams from inactivation
by β-lactamase
Synergism
Compound preparation (复方制剂)
Thank you
flory
florey
chain