CED WG PATIENT SAFETY // SUMMARY OF CED POSITIONS ON

Download Report

Transcript CED WG PATIENT SAFETY // SUMMARY OF CED POSITIONS ON

RISK MANAGEMENT IN DENTAL PRAXIS
Part 1
ΠΡΟΣΤΑΣΙΑ ΟΔΟΝΤΙΑΤΡΙΚΟΥ
ΑΣΘΕΝΟΥΣ
ή
ΠΡΟΣΤΑΣΙΑ ΤΟΥ ΑΣΘΕΝΟΥΣ ΣΤΟ
ΟΔΟΝΤΙΑΤΡΕΙΟ
Ι.Γ.ΤΖΟΥΤΖΑΣ Αναπλ. Καθηγητής
Συντονιστής Μαθήματος Οργ. & Διαχείρισης Οδοντιατρείου
RISK MANAGEMENT
Understanding the risks of clinical
practice and overcoming them in a
planned and positive way.
BENEFITS OF RISK MANAGEMENT
Improved patient care
Reduction in risk exposure
Closer working relationship inside the dental team
Improved patient acceptance at proposed treatment
Growth in demand of services
AIMS OF RISK MANAGEMENT
•Assess continuously what could go wrong
•Determine which risks are important to deal with
•Implement strategies to deal with no risks
RISK IDENTIFICATION
 Clinical risk
 Operational risk
 Business risk
 Reputation risk
Elimination
Complete removal the hazard or risk of
exposure ( faulty piece of equipment,
design of work area)
Substitution
Replacing the hazard with a nonhazardous alternative ( SU items)
Technological controls
Heated surfaces protection
Air powder suction removal
Operational control
Work practices reducing the risk of
injury ( protocols for hazardous
materials, rubber dam )
Personal protective measures
Gloves, glasses, face masks
•CED RECOMMENDATIONS TO ITS MEMBER ORGANISATIONS
•The CED recommends that its member organisations:
•Seek to ensure that patient safety is part of undergraduate and post-graduate dental
training curricula, to strengthen further the patient safety culture in healthcare.
•Encourage their dentists to be actively aware of the various elements of their
professional practice where patient safety can be compromised.
•Encourage their dentists and the rest of the dental team to participate in continuing
professional development relating to patient safety, to keep knowledge and skills up to
date.
•Ensure that dentists have a knowledge of languages necessary for practising in their
country, in particular in order that they be able to communicate with patients and other
professionals.
•Seek to ensure that patient data is safely stored and available to health professionals as
and when required, in accordance with national law.
•Ensure official registration of qualifications of dentists.
•Ensure transparency of the qualifications and competences of all other members of the
dental team, as required by national law.
•Consider establishing “study groups” to provide a forum for local dentists to discuss
experiences openly and learn from each other.
•Seek to introduce national systems for voluntarily and anonymously reporting adverse
events, near misses and problems with medical devices, to enable all dentists to learn
from their own and others’ experiences.
•Promote the CED code of ethics and national ethical codes, since strong ethics underpin
high quality and safety.
CED WG PATIENT SAFETY
SUMMARY OF CED POSITIONS ON PATIENT SAFETY CED-DOC-2011-013
1. European dentists are committed to providing safe and high quality dental care and minimising
risks arising from dental care. While “zero-risk” medical care does not exist, improving patient safety
and quality of care is an on-going preoccupation for the dental profession.
2. Action aimed at improving patient safety and quality of care should take into account the
various healthcare settings in which patients are treated. The types of patient safety risks and the
most appropriate ways of minimising them vary according to the health setting. Most dental care in
Europe is provided in liberal practice, in small structures, and in an environment where the dentist
generally has complete individual responsibility for the whole procedure.
3. New measures aimed at improving patient safety should not add to the bureaucratic burden in
the dental practice to the extent that they would hinder dentists from spending sufficient time
with each patient. Devoting sufficient time to each patient is an important parameter of safe and
high quality dental care.
4. Reduction of adverse events is most effectively achieved through collaboration and coregulation
with dentists, rather than through the threat of outside sanctions. The dental
profession in every Member State has self-regulatory functions in promoting high quality and works
with its respective government in a co-regulatory context to promote patient safety and quality.
5. The dental profession seeks to improve safety and quality in many ways. This includes:
- Continuing professional development to keep skills up to date;
- Establishing local study groups for dentists to learn from each others’ experiences;
- Developing systems for non-blame, voluntary and anonymous reporting of adverse events or
near misses;
- Ensuring compliance with infection control and waste management laws.
6. Safe and high quality dental care throughout Europe is underpinned by high standards of
professional conduct and ethics. Apart from encouraging dentists to comply with national
ethicalcodes, CED members have agreed to a set of general ethical principles and have adopted
a Code of Ethics for Dentists in the European Union (first adopted in 1965, last amended in
2007). In the Code of Ethics, European dentists confirmed their commitment to acting always in
the best interests of the patients and to respecting their dignity, autonomy and choices,
including through good Communication.
7. Ensuring patient safety in cases of patient cross-border mobility can be particularly
challenging. The trend of dental tourism, where patients travel long distances for extensive
but quick treatment, is where patient safety comes under considerable threat. Pre-treatment
planning and post treatment care, which are essential parts of high-quality dental care, cannot
easily be undertaken.
Also, communication between patient and professional can be hampered due to language
difficulties. Better information on the potential risks should be provided to patients in line with
the provisions of the Directive on the application of patients’ rights in cross-border healthcare.
Dental tourism should not be promoted.
CED-DOC-2011-013-E
11 Μαρτίου 2011
ΣΥΜΒΟΥΛΙΟ ΕΥΡΩΠΑΙΩΝ ΟΔΟΝΤΙΑΤΡΩΝ
• ΟΜΑΔΑ ΕΡΓΑΣΙΑΣ ΤΟΥ ΣΕΟ ΓΙΑ ΤΗΝ ΑΣΦΑΛΕΙΑ ΤΟΥ ΑΣΘΕΝΟΥΣ
• ΠΕΡΙΛΗΨΗ ΤΩΝ ΘΕΣΕΩΝ ΤΟΥ ΣΕΟ ΓΙΑ ΤΗΝ ΑΣΦΑΛΕΙΑ ΤΟΥ ΑΣΘΕΝΟΥΣ
1.
Οι Ευρωπαίοι Οδοντίατροι είναι δεσμευμένοι στην παροχή ασφαλούς και
υψηλής ποιότητας οδοντιατρικής περίθαλψης και στην ελαχιστοποίηση των
κινδύνων που προκύπτουν από την οδοντιατρική περίθαλψη. Αν και δεν υφίσταται
ιατρική περίθαλψη με «μηδενικό κίνδυνο», η βελτίωση της ασφάλειας του ασθενούς και
της ποιότητας της φροντίδας αποτελεί αδιάλειπτη μέριμνα
του οδοντιατρικού
επαγγέλματος.
2. Η δράση με στόχο τη βελτίωση της ασφάλειας του ασθενούς και της ποιότητας
της περίθαλψης θα πρέπει να λαμβάνει υπόψη τις ποικίλες ιατρικές συνθήκες στις
οποίες οι ασθενείς δέχονται θεραπευτική φροντίδα. Οι τύποι των κινδύνων της
ασφάλειας των ασθενών και οι καταλληλότεροι τρόποι ελαχιστοποίησης τους ποικίλλουν
ανάλογα με τις συνθήκες παροχής της υγειονομικής περίθαλψης. Το μεγαλύτερο μέρος
της οδοντιατρικής περίθαλψης στην Ευρώπη παρέχεται από την ελεύθερη άσκηση, σε
μικρές δομές και σε ένα περιβάλλον όπου ο οδοντίατρος γενικά πρέπει να έχει πλήρη
ατομική ευθύνη για την όλη διαδικασία.
3. Νέα μέτρα με στόχο τη βελτίωση της ασφάλειας του ασθενούς δεν θα πρέπει να
προστεθούν στον γραφειοκρατικό φόρτο της οδοντιατρικής άσκησης στο βαθμό
που θα παρεμπόδιζαν τους οδοντιάτρους από το να αφιερώνουν επαρκή χρόνο
στον κάθε ασθενή. Η αφιέρωση ικανού χρόνου στον κάθε ασθενή αποτελεί μιαν
σημαντική παράμετρο της ασφαλούς και υψηλής ποιότητας οδοντιατρικής περίθαλψης.
4. Η μείωση των δυσμενών συνεπειών επιτυγχάνεται πιο
αποτελεσματικά μέσω της συνεργασίας και της συνεργασίας των
οδοντιάτρων, παρά μέσω των εξωτερικών κυρώσεων.
Το οδοντιατρικό επάγγελμα σε κάθε κράτος-μέλος έχει αυτό-ρυθμιστικές
λειτουργίες στην προαγωγή της υψηλής ποιότητας και λειτουργεί με την
αντίστοιχη διαχείριση της σε ένα συνεργατικό πλαίσιο ώστε να προάγει
την ασφάλεια του ασθενούς και την ποιότητα.
5. Tο οδοντιατρικό επάγγελμα προσπαθεί με ποικίλους τρόπους
για τη βελτίωση της ασφάλειας και της ποιότητας. Μεταξύ αυτών
είναι:
- Η Συνεχιζόμενη επαγγελματική ενημέρωση για τη σταθερή
επικαιροποίηση των δεξιοτήτων των Οδοντιάτρων
- Η σύσταση τοπικών ομάδων μελέτης για τους οδοντιάτρους ώστε ο
ένας να μαθαίνει από τις εμπειρίες των άλλων
- Η δημιουργία συστημάτων για μη-καταγγελτική, εθελοντική και
ανώνυμη αναφορά δυσμενών συνεπειών ή οιονεί ατυχημάτων.
- Η διασφάλιση της συμμόρφωσης με τις νομοθεσίες για τον έλεγχο των
λοιμώξεων και τη διαχείριση των αποβλήτων.
6. Η Ασφαλής και υψηλής ποιότητας οδοντιατρική
περίθαλψη σε όλη την Ευρώπη υποστηρίζεται από
υψηλές προδιαγραφές επαγγελματικής συμπεριφοράς
και δεοντολογίας.
Εκτός από την παρότρυνση των οδοντιάτρων να
συμμορφώνονται με τους εθνικούς δεοντολογικούς κώδικες,
τα μέλη του ΣΕΟ έχουν συμφωνήσει σε μια σειρά γενικών
δεοντολογικών αρχών και έχουν υιοθετήσει έναν Κώδικα
Δεοντολογίας για τους οδοντιάτρους της ΕΕ (που
υιοθετήθηκε κατά πρώτον το 1965 και τροποποιήθηκε
τελευταία φορά το 2007). Στον Κώδικα Δεοντολογίας, οι
Ευρωπαίοι οδοντίατροι επιβεβαίωσαν τη δέσμευσή τους να
λειτουργούν πάντοτε για το καλύτερο συμφέρον των
ασθενών, να σέβονται την αξιοπρέπεια, την αυτονομία και τις
επιλογές τους και να διατηρούν καλή επικοινωνία μαζί τους.
7. Η κατοχύρωση της ασφάλειας του ασθενούς στις περιπτώσεις
της διασυνοριακής κινητικότητας μπορεί να είναι ιδιαιτέρως
δύσκολη.
Η τάση του οδοντιατρικού τουρισμού, όπου οι ασθενείς διανύουν
μεγάλες αποστάσεις για παρατεταμένη, όμως ταχεία θεραπεία,
αποτελεί μια κατάσταση στην οποία η ασφάλεια του ασθενούς
απειλείται σημαντικά.
Δεν είναι εύκολο για τον θεράποντα οδοντίατρο να αναλάβει τον προθεραπευτικό σχεδιασμό και τη μετα–θεραπευτική περίθαλψη, που
αποτελούν ουσιαστικά κομμάτια της υψηλής ποιότητας οδοντιατρικής
περίθαλψης. Επίσης, η επικοινωνία μεταξύ του ασθενούς και του
επαγγελματία μπορεί να παρακωλύεται εξαιτίας των γλωσσικών
δυσκολιών. Θα πρέπει να παρέχεται στους ασθενείς καλύτερη
ενημέρωση για τους εν δυνάμει κινδύνους, σύμφωνα με τις διατάξεις
της Οδηγίας για την Εφαρμογή των Δικαιωμάτων των ασθενών στη
διασυνοριακή υγειονομική περίθαλψη.
Ο οδοντιατρικός τουρισμός δεν πρέπει να ενθαρρύνεται.
ΑΣΦΑΛΕΙΑ ΑΣΘΕΝΟΥΣ
•
•
•
•
•
•
•
•
•
•
Μετάδοση Λοιμωδών Νοσημάτων (cross contamination)
Προστασία από Λεγιονέλλα
Προστασία από τραυματισμό
Προστασία από κατάποση ξένου σώματος
Προστασία από χημικές βλάβες
Προστασία από ατμούς υδραργύρου
Προστασία από πολυμερή/VOCs
Προστασία από ακατάλληλη φαρμακοδοσία
Προστασία από ακατάλληλα οδοντιατρικά υλικά
Προστασία από βλάβη σε είδη ένδυσης.
ΚΥΚΛΟΣ ΔΙΑΚΙΝΗΣΗΣ ΕΡΓΑΛΕΙΩΝ
ΦΥΛΑΞΗ
ΧΡΗΣΙΜΟΠΟΙΗΣΗ
ΑΠΟΡΡΙΨΗ
ΠΛΥΝΤΗΡΙΟ
ΥΠΕΡΗΧΟΙ
ΑΠΟΣΤΕΙΡΩΣΗ
ΣΥΣΚΕΥΑΣΙΑ
This annex lists CED-agreed voluntary recommendations for the basic
procedures necessary to maintain a safe environment for both dental
staff and patients.
Recommendation 1: Choice of equipment
Recommendation 2: Choice of flooring and bench materials
Recommendation 3: Patients’ medical records
Recommendation 4: Immunization
Recommendation 5: Hand-washing and disinfection
Recommendation 6: Gloves
Recommendation 7: Masks and goggles/dental clothing
Recommendation 8: Surface protection and covering
Recommendation 9: Labeled single-use items
Recommendation 10: Disinfection materials
Recommendation 11: Instrument decontamination and sterilization
Recommendation 12: Sterilization monitoring and indicators
Recommendation 13: Handpiece sterilization
This annex lists CED-agreed voluntary recommendations for the basic
procedures necessary to maintain a safe environment for both dental
staff and patients.(continues)
Recommendation 13: Handpiece sterilization
Recommendation 14: Sterilization of burrs and endodontic instrumentation
Recommendation 15: Decontamination of equipment
Recommendation 16: Decontamination of impression materials
Recommendation 17: Decontamination/sterilization of orthodontic appliances
Recommendation 18: Handling of blood spills.
Recommendation 19: Aerosol splatters. Dental Office air and water quality.
Recommendation 20:Waste disposal management
Recommendation 21: Amalgam and toxic materials disposal management
Recommendation 22: Biopsy tissues, teeth and small tissues management
Recommendation
23:
Inoculation
injuries
prophylaxis (PEP)
Recommendation 24: Infected dental personnel
protocol/Post-exposure
ΒΑΣΙΚΕΣ ΟΔΗΓΙΕΣ ΑΠΟΣΤΕΙΡΩΣΗΣ -ΕΛΕΓΧΟΥ ΔΙΑΣΠΟΡΑΣ ΛΟΙΜΩΞΕΩΝ
και ΠΡΟΣΤΑΣΙΑΣ ΕΡΓΑΛΕΙΩΝ
1
2
3
4
5
6
7
8
9
10
11
12
ΟΛΑ ΤΑ ΜΕΤΑΛΛΙΚΑ ΕΡΓΑΛΕΙΑ ΠΛΕΝΟΝΤΑΙ ΣΤΑ ΠΛΥΝΤΗΡΙΑ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΩΝ ΚΑΤΑΛΛΗΛΩΝ
ΑΠΟΡΡΥΠΑΝΤΙΚΩΝ
ΤΑ ΕΡΓΑΛΕΙΑ ΤΟΠΟΘΕΤΟΥΝΤΑΙ ΣΤΕΓΝΑ στους ΕΙΔΙΚΟΥΣ ΦΑΚΕΛΛΟΥΣ ή ΤΙΣ ΚΑΣΣΕΤΙΝΕΣ ΑΠΟΣΤΕΙΡΩΣΗΣ ΚΑΙ
ΜΕΤΑΦΕΡΟΝΤΑΙ ΣΤΟΥΣ ΑΥΤΟΚΑΥΣΤΟΥΣ ΚΛΙΒΑΝΟΥΣ
Η ΑΠΟΣΤΕΙΡΩΣΗ ΣΤΑ ΑΥΤΟΚΑΥΣΤΑ ΔΙΕΝΕΡΓΕΙΤΑΙ ΣΤΟ ΠΡΟΓΡΑΜΜΑ ΤΩΝ 134οC ΓΙΑ ΤΟ ΧΡΟΝΙΚΟ ΔΙΑΣΤΗΜΑ ΠΟΥ
ΠΡΟΒΛΕΠΕΤΑΙ ΓΙΑ ΤΑ ΣΥΣΚΕΥΑΣΜΕΝΑ ΕΡΓΑΛΕΙΑ. ΑΠΑΓΟΡΕΥΕΤΑΙ Η ΠΑΡΑΒΙΑΣΗ Η ΤΡΟΠΟΠΟΙΗΣΗ ΤΩΝ
ΠΡΟΓΡΑΜΜΑΤΩΝ ΑΠΟΣΤΕΙΡΩΣΗΣ
ΜΕΤΑ ΤΟ ΠΕΡΑΣ ΤΟΥ ΚΥΚΛΟΥ ΤΗΣ ΑΠΟΣΤΕΙΡΩΣΗΣ ΠΡΕΠΕΙ ΝΑ ΑΚΟΛΟΥΘΕΙ Ο ΚΥΚΛΟΣ ΣΤΕΓΝΩΜΑΤΟΣ ΤΩΝ
ΕΡΓΑΛΕΙΩΝ.
ΤΑ ΣΥΣΚΕΥΑΣΜΕΝΑ ΕΡΓΑΛΕΙΑ ΟΦΕΙΛΟΥΝ ΝΑ ΕΞΕΡΧΟΝΤΑΙ ΑΠΟΤΟΥΣ ΚΛΙΒΑΝΟΥΣ, ΕΛΕΥΘΕΡΑ ΕΜΦΑΝΟΥΣ
ΥΓΡΑΣΙΑΣ.
ΟΛΕΣ ΟΙ ΠΑΡΑΠΑΝΩ ΟΔΗΓΙΕΣ ΙΣΧΥΟΥΝ ΚΑΙ ΓΙΑ ΤΙΣ ΚΑΘΕ ΦΥΣΗΣ ΧΕΙΡΟΛΑΒΕΣ.
ΟΛΕΣ ΟΙ ΕΓΓΛΥΦΙΔΕΣ ,ΤΑ ΜΕΤΑΛΛΙΚΑ ΔΙΣΚΑΡΙΑ,ΟΙ ΑΡΠΑΓΕΣ,ΟΙ ΣΥΓΚΡΑΤΗΤΗΡΕΣ ΤΟΙΧΩΜΑΤΩΝ,ΟΙ ΡΙΝΕΣ
ΕΝΔΟΔΟΝΤΙΑΣ, ΠΡΕΠΕΙ ΝΑ ΔΟΝΟΥΝΤΑΙ ΓΙΑ 10 ΛΕΠΤΑ ΣΤΙΣ ΣΥΣΚΕΥΕΣ ΥΠΕΡΗΧΩΝ ΣΕ ΚΑΤΑΛΛΗΛΟ ΕΝΖΥΜΙΚΟ ή
ΑΝΤΙΣΚΩΡΙΑΚΟ ΔΙΑΛΥΜΑ.
ΤΟ ΙΔΙΟ ΙΣΧΥΕΙ ΓΙΑ ΕΡΓΑΛΕΙΑ ΧΕΙΡΟΣ ΟΠΟΥ ΔΙΑΠΙΣΤΩΝΟΝΤΑΙ ΟΞΕΙΔΩΣΕΙΣ ή ΚΑΘΗΛΩΣΗ ΟΔΟΝΤΙΑΤΡΙΚΩΝ ΥΛΙΚΩΝ.
ΣΕ ΕΞΑΙΡΕΤΙΚΕΣ ΠΕΡΙΠΤΩΣΕΙΣ ΕΠΙΜΟΝΩΝ ΚΑΘΗΛΩΣΕΩΝ ΜΠΟΡΟΥΝ ΝΑ ΧΡΗΣΙΜΟΠΟΙΗΘΟΥΝ ΟΙ ΕΙΔΙΚΕΣ ΨΗΚΤΡΕΣ
ΑΠΟ ΧΑΛΥΒΑ ΓΙΑ ΤΗΝ ΑΠΟΜΑΚΡΥΝΣΗ ΤΩΝ ΡΥΠΩΝ.
ΟΛΑ ΤΑ ΠΛΑΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΠΟΥ ΕΙΝΑΙ ΘΕΡΜΟΕΥΑΙΣΘΗΤΑ ΑΠΟΛΥΜΑΙΝΟΝΤΑΙ ΜΕ ΕΜΒΥΘΙΣΗ ΣΕ ΚΑΤΑΛΛΗΛΑ
ΔΙΑΛΥΜΑΤΑ.
ΟΙ ΕΡΓΑΛΕΙΟΔΟΤΡΙΕΣ ΟΦΕΙΛΟΥΝ ΝΑ ΦΟΡΟΥΝ ΚΑΤΑΛΛΗΛΑ ΓΑΝΤΙΑ, ΜΑΣΚΑ ΚΑΙ ΓΥΑΛΙΑ ΠΡΟΣΤΑΣΙΑΣ ΑΠΟ ΤΗΝ
ΕΚΤΟΞΕΥΣΗ ΥΓΡΩΝ ΚΑΤΆ ΤΗ ΔΙΑΔΙΚΑΣΙΑ ΤΟΥ ΚΑΘΑΡΙΣΜΟΥ ΤΩΝ ΕΡΓΑΛΕΙΩΝ
ΓΙΑ ΚΑΘΕ ΑΠΟΡΙΑ Η ΕΚΤΑΚΤΟ ΠΕΡΙΣΤΑΤΙΚΟ ΠΡΕΠΕΙ ΝΑ ΕΙΔΟΠΟΙΕΙΤΑΙ Η ΠΡΟΙΣΤΑΜΕΝΗ ή ΚΑΠΟΙΟ ΑΠΟ ΤΑ ΜΕΛΗ
ΤΗΣ ΕΠΙΤΡΟΠΗΣ ΛΟΙΜΩΞΕΩΝ
Επιτροπή Ελέγχου Λοιμώξεων
ΕΠΙΣΗΜΑΝΣΕΙΣ………………..
Χρησιμοποιείτε μιας χρήσης εξοπλισμό όπου κρίνετε ότι
είναι άκρως απαραίτητος
Τα είδη μιας χρήσης πρέπει να απορρίπτονται μετά το
πέρας της εργασίας
Χρησιμοποιείτε εφάπαξ βελόνες αναισθησίας για κάθε
ασθενή
Χρησιμοποιείστε την αναισθητική αμπούλα μόνο σε ένα
περιστατικό
Είδη που χαρακτηρίζονται σαν μιας χρήσης πρέπει να μην
επαναχρησιμοποιούνται
Είδη που χαρακτηρίζονται σαν μιας χρήσης πρέπει να μην
αποστειρώνονται για επαναχρησιμοποίηση.
Εάν και εφόσον υπάρχει οποιαδήποτε
υποψία για ανεπαρκή κύκλο
αποστείρωσης και ασηψίας ή για μη
εμφανώς καθαρό εργαλείο, πρέπει να
αντικαθίσταται αμέσως με αντίστοιχο
ΚΑΘΑΡΟ και ΒΕΒΑΙΩΜΕΝΑ ΣΤΕΙΡΟ
ΜΙΚΡΟΒΙΩΝ .
Για την περίπτωση επιφανειών αυτές
πρέπει να καθαρίζονται επιμελώς και να
καλύπτονται με κατάλληλα υλικά.
Legionella pneumofila
Legionellosis
Fact sheet N°285
February 2005
Πνευμονική εμπλοκή
Μη Πνευμονική εμπλοκή
Στοχεύει κύρια άτομα ηλικιωμένα, με μειωμένη άμυνα, ανοσοκατασταλμένα,
μεταμοσχευμένα,ΗΙV
Η συμπτωματολογία από τη λεγιονέλλωση είναι πυρετός, απώλεια όρεξης,
πονοκέφαλος, κακουχία και λήθαργος. Πολλοί ασθενείς μπορεί να
παρουσιάσουν μυαλγίες, διάρροια, και σύγχιση. Υπάρχει επίσης ελαφρός
βήχας ,παραγωγή αποχρέμψεων, σόκ και αιφνίδια νεφρική ανεπάρκεια και
πολυοργανική έκπτωση.
Η θεραπεία απαιτεί αντιβιοτική κάλυψη και συνήθως ολοκληρώνεται μετά την
παρέλευση πολλών εβδομάδων ή και μηνών.
Σε σπάνιες περιπτώσεις σοβαρή πνευμονία ή προοδευτική αναποτελεσματική
θεραπεία για πνευμονία μπορεί να οδηγήσει σε εγκεφαλικά επακόλουθα.
Due to the presence of extended narrow bore tubing and long
periods of stagnation, dental unit water systems (DUWs) can be
prone to relatively high levels of microbial contamination,
including the formation of biofilm and the presence of
opportunistic pathogens, irrespective of the source and quality
of the inflowing water. Whilst the European Union (EU) has yet to
set a definitive microbiological guideline, the American Dental
Association (ADA) has set a maximum of <200 colony forming
units (cfu)/ml for DUWs water in the USA. The objective of this
review is to discuss why microbial contamination and biofilms
are so prevalent in DUWs, as well as the role of disinfectants and
their potential for achieving microbial water quality levels
recommended by the ADA.
J. Walker and P. Marsch J. of Dentistry Vol.35(9),2007
Legionella pneumophila contamination of a dental unit water line system
in a dental teaching centre
SY Ma'ayeh AS Al-Hiyasat MY Hindiyeh YS Khader
Objective: This study aimed to evaluate the extent of Legionella pneumophila contamination in a
dental unit water line (DUWL) at a Dental Teaching Centre in Jordan.
Methods: Ten dental units were sampled from each teaching clinic, namely conservative
dentistry, periodontology and prosthodontics. Samples were collected from the air/water syringe,
high-speed hand piece and water cup filler. Sampling time was at the beginning of the working
day (before the dental unit was used), after 2 min of flushing, and at midday.
Results: Legionella pneumophila counts ranged between 0 and 8.35 × 103 (CFU ml−1). Legionella
pneumophila was detected in 86.7% of the dental units at the beginning of the working day, 40%
after 2 min flushing and 53.3% at midday. The highest L. pneumophila counts were found at the
beginning of the working day which were reduced by flushing the waterlines. The conservative
dentistry clinic had the highest contamination level followed by the periodontology and
prosthodontics clinics (P < 0.05). The rate of contamination can be ascribed to the dental
procedures performed in the clinics, the degree of using the hand pieces, and water softening
and heating.
Conclusions: The difficulty of completely eliminating micro-organism contaminating water used
for dental treatment and the resulting biofilm suggest that flushing of DUWL can be a first
solution in reducing L. pneumophila counts, while the incorporation of a disinfection method is
highly recommended. Water heating and softening should be considered in practicing dentistry as
factors that may aid in L. pneumophila proliferation inside the DUWL.
The presence of Pseudomonas aeruginosa in the dental unit waterline
systems of teaching clinics
AS Al-Hiyasat, SY Ma'ayeh, MY Hindiyeh and YS Khader
Objective: The objective of this study was to evaluate the extent of Pseudomonas
aeruginosa contamination of Dental Unit Water (DUW) at a Dental Teaching
Center in Jordan. Methods: Water samples were collected from 30 dental units, 10
from each of three teaching clinics, namely conservative dentistry, periodontology,
and prosthodontics. Samples were collected from the outlet of the air/water
syringe, high-speed handpiece and water cup filler, at the beginning of the
working day (before use), after 2 min flushing, and at midday. Results: P.
aeruginosa was detected in 86.7% (26/30) of the dental units at the beginning of
the working day, and in 73.3% (22/30) after 2 min of flushing and at midday.
Conservative dentistry units had the highest counts, followed by periodontology
and prosthodontics (P < 0.05). Overall, the highest counts (log10 count CFU ml−1)
were at the beginning of the working day (1.38 ± 1.05), and the lowest counts
after flushing for 2 min (1.10 ± 1.03), and higher numbers were seen again at
midday (1.15 ± 1.04) (P < 0.05). Conclusions: 86.7% of the dental units were
contaminated with P. aeruginosa, the conservative dentistry units had the highest
amount of contamination. Flushing the DUW for 2 min significantly reduced the
counts of P. aeruginosa
Appl Environ Microbiol. 2003 June; 69(6): 3412–3420.
PMCID: PMC161485
doi: 10.1128/AEM.69.6.3412-3420.2003.
Copyrigh
Microbial Diversity of Biofilms in Dental Unit Water Systems
Ruby Singh,1 O. Colin Stine,2 David L. Smith,2 John K. Spitznagel,3 Mohamed E. Labib,4 and Henry
N. Williams1*
Some organisms found in the DUWS may pose a health risk to some patients. Leptospira, the
most common organism detected, can invade any susceptible mucosal membrane and cause
leptospirosis. Sphingomonas and Legionella, two organisms found in the DUWL, are easily
spread via aerosols. Sphingomonas sp. strains secrete viscous polysaccharides (24), which aid in
their ability to adhere to and corrode surfaces of pipelines. Legionella species are known to
cause respiratory infections (2). Both species have been found in hospital environments,
including such devices as mechanical ventilators, catheters, and bronchofiberoscopes (11, 19).
Their presence in DUWL is a concern, because studies have shown that aerosols generated from
dental handpieces during treatment are sufficient to expose patients and dental personnel to
the microorganisms in the DUWS (10).
The quality of water passing through the waterlines of the dental units is of primary concern to clinicians because both the patient
and the office staff are exposed to the aerosols generated during the various clinical procedures.1 The concern is related to both
the chemical and particle contents of the water as well as the bacterial count in the waterline.2–4
For a number of years, it has been ascertained that water delivered from the dental units during routine dental procedures is
highly contaminated by numerous species of pathogen and nonpathogen microorganisms, which enter the dental units by being
retracted up from the oral cavity of patients undergoing dental treatment.2
The biofilm, which is derived from bacteria in the incoming water and is intrinsically resistant to most biocides, is the primary
reservoir for continued contamination of the system.1 Biofilm forms a tenacious layer that is strongly adherent to the walls of the
tubing and often contains different types of pathogenic bacteria.3
In 1996, the American Dental Association established a goal for dental water quality and specified that it should not contain
more than 200 colony forming units per milliliter (CFU/mL).2,4 On the other hand, Lingr et al found that untreated dental unit
waterlines may contain up to 9760 CFU/mL.5 Because of such significant levels of contamination, the use of intraoperative
antimicrobial agents have been implemented either to be placed in the unit waterline or used topically after cavity preparation.6
Numerous chemicals for use in disinfecting dental waterlines have been suggested.7 Lingr et al5 found that hydrogen peroxide–
based dental unit waterline treatment reduced colonization from 9760 CFU/mL to 200 CFU/mL in one week. By four weeks, the
count was reduced to 0 CFU/mL. Meiller et al8 found that the use of Listerine Antiseptic for 18 hours rendered biofilm samples
free of recoverable bacteria.
Other chemicals for disinfecting dental waterlines have been used, including sodium hypochlorite, glutaraldehyde,
chlorhexidine, iodine, and Sterilox, which is superoxidized water. All these chemicals were found to be effective in reducing
bacterial biofilm.9–11
Mc Fadden et al6 found that the use of chlorhexidine or glutaraldehyde during the bonding procedure with All-Bond 2 increased
its shear bond strength to dentin. Knight et al7 found no significant difference in shear bond strengths of resin-based composite to
tooth structure when rinsed with distilled water as compared with those rinsed with distilled water mixed with mouthwash. On
the other hand, Taylor-Hardy et al12 suggested that dental unit waterline biocides might adversely affect adhesion of resin to
enamel.
Because of these controversial findings, it is important for the orthodontists to know whether the bond strength will be affected
by using water containing an antibacterial agent. The purpose of this study was to determine whether disinfecting the waterlines
in the dental units with an iodine compound will affect the shear strength of orthodontic brackets bonded to enamel.
In the present work, we evaluated (a) the influx of contaminating fluid into the
air chamber when a high-speed turbine stops rotating, (b) the significance of a
series of variables (type of handpiece and dental unit, shape of the bur, number
of stops set on the turbine) which condition it, and (c) the time required to expell
the contaminating fluid from the turbine head. Results showed that
contamination takes place every time the turbine stops rotating with the bur in
contact with an external fluid. The main variable affecting the influx of
contaminating fluid into the air chamber of the turbine head was represented by
the shape of the bur (F=54.9; p<0.01). Another significant variable was the type
of handpiece and dental unit (F=7.3; p=0.01). The number of stops set on the
turbine was irrelevant (F=0.03; p=n.s.). The expulsion of the contaminant from
the turbine head showed 2 different exponential rates: a very rapid-elimination
phase within 30 s and a slow-elimination phase between 60 and 300 s. In order
to remove over 99%, of the contaminant from the air chamber, a turbine had to
run for more than 4–7 min depending on the type of the handpiece. In
conclusion, data from the present study suggest that a significant cross-infection
potential exists with high-speed handpieces whenever they are only externally
scrubbed and disinfected so the internal cleaning and sterilization between
patients is mandatory. The practice of flushing by running the turbines between
patients should be discouraged.
Luigi Checchi1, Lucio Montebugnoli1 and Simona Samaritani1 :
J.Clin.Period.(2007)
Int Dent J. 2006 Aug ;56 (4):187-95 16972392
Attitudes of general dental practitioners in Europe to the
microbial risk associated with dental unit water systems.
J J Kamma , D J Bradshaw , M R Fulford , P D Marsh , E Frandsen , E Ostergaard , A J Schel
, J M ten Cate , W R Moorer , A Mavridou , G Mandilara , L Stoesser , S Kneist , R Araujo , N
Contreras , P Goroncy-Bermes , F Burke , D O'Mullane , M O'Sullivan , J T Walker
Appl Environ Microbiol. 2006 Feb ;72 (2):1380-7 16461690
Comparison of the Efficacies of Disinfectants To Control
Microbial Contamination in Dental Unit Water Systems in
General Dental Practices across the European Union.
A J Schel , P D Marsh , D J Bradshaw , M Finney , M R Fulford , E Frandsen , E Ostergaard , J
M Ten Cate W R Moorer , A Mavridou , J J Kamma , G Mandilara , L Stösser , S Kneist , R
Araujo , N Contreras , P Goroncy-Bermes , D O'mullane , F Burke , P O'reilly , G Hourigan ,
M O'sullivan , R Holman , J T Walker
Eur J Oral Sci. 2004 Oct ;112 (5):412-8 15458499
Microbiological evaluation of dental unit water systems in
general dental practice in Europe.
J T Walker , D J Bradshaw , M Finney , M R Fulford , E Frandsen , E ØStergaard , J M Ten
Cate , W R Moorer , A J Schel , A Mavridou , J J Kamma , G Mandilara , L Stösser , S Kneist ,
R Araujo , N Contreras P Goroncy-Bermes , D O'Mullane , F Burke , A Forde , M O'Sullivan ,
P D Marsh
ELECTRON MICROSCOPIC EXAMINATION OF
DENTAL UNIT WATERLINES BIOFILM
Jolanda Shymanska
Department of Paedodontics, Medical University of Lublin, Poland
Ann Agric Environ Med 2005, 12, 295–298.
Abstract: Using the transmission electron microscope, the ultrastructural
examination was conducted to detect the presence of bacterial biofilm on
the inner surfaces of thetubing in dental unit waterlines (DUWL). Samples
for examination were taken from the tubes providing water to high-speed
and slow-speed handpieces, and to an air-watersyringe before application
of a disinfection procedure. The microscopic analysis made it possible to
find the biofilm in all the tubes in the dental unit which were not
predisinfected.
In these samples, no significant differences were found between highspeed,slow-speed and air-water lines.
0586 Development of Hospital-Wide Centralised Automated Waterline
Biofilm Control
1
2
1
1
M. O'DONNELL , R. RUSSELL , and D. COLEMAN , Dublin Dental School & Hospital, Ireland,
University of Dublin
Objectives: To effectively control microbial biofilm and water quality in dental unit
waterlines (DUWs) from multiple dental chair units (DCUs) simultaneously via an automated
centralised system in Dublin Dental Hospital.
Methods: Mains water was purified and standardised by automated removal of particles
>10 µm, metal ion removal (KDF filtration), softening (ion exchange) prior to disinfection
using Ecasol (pH 7.0) (Trustwater, Clonmel, Ireland). A recirculating ring-main supplies this
water to 103 dental chair units. The microbial quality of DUW output water from 3 in 1
air/water syringes from 6 sentinel DCUs was tested by plating on R2A agar (20ºC for 10
days) three times per week for 6 months and chemical quality of water was assessed by
inductively coupled plasma-mass spectrometry. Biofilm presence in DUWs from these DCUs
was assessed by electron microscopy.
Results: DUW output water from all 6 DCUs tested maintained zero bacterial colony
forming units (CFUs) per ml in > 90% of the 75 individual samples tested from each DCU
over 6 months. The remaining samples yielded very low bacterial counts (range 1-20
CFU/ml). Electron microscopy of DUW tubing samples from each DCU revealed the total
absence of biofilm. Chemical quality of DUW output water well exceeded the EU potable
water requirements while microbial quality bettered all international Guidelines. No evidence
for DCU, DUW or dental handpiece corrosion was observed during the course of the study.
Marked savings in labour, downtime and equipment replacement was noted.
Conclusion: These findings demonstrate that automated pre-treatment of DCU supply
water to minimise dissolved and suspended organic and inorganic material followed by
automated antimicrobial treatment with Ecasol effectively, consistently and safely controls
biofilm formation in multiple DCUs and thus provides output water of superior quality and
safety for patients and staff together with maintenance and economic benefits.
2
Seq #60 - Microbiology : Antibacterials and infection control
3:30 PM-5:30 PM, Thursday, September 11, 2008 Queen Elizabeth II Conference Centre
Sacchetti R, Baldissarri A, De Luca G, Lucca P, Stampi S, Zanetti F: Microbial
contamination in dental unit waterlines: comparison between Er:YAG laser and turbine
lines. Ann Agric Environ Med 2006, 13, 275–279.
Abstract: The investigation was carried out by evaluating the microbiological
characteristics of the water before and after treatment with Er:YAG laser and turbine.
The study was carried out in 2 dental surgeries. In both cases the laser and dental units
were served by two independent circuits, fed by the same potable tap water. Samples
were taken from the water supplying and the water leaving the turbine and laser before
and after treatment on the same patient. Total heterotrophic plate count was measured at
36ºC and at 22ºC, and the presence of Staphylococcus species and non-fermenting Gram
negative bacteria was investigated. Bacterial contamination was found within the
circuit, especially in the laser device. Pseudomonas aeruginosa was detected in only 1
sample of supply water, in 11.1% and in 19.4% of the samples from the turbine and the
laser respectively. No evidence of Staphylococcus aureus was found. The contamination
of supply water was low, whereas that of the water leaving the handpieces of
the 2 devices was high, especially in the laser. Attention should be paid to the control of
the water leaving laser devices, given the increasingly wide use of such instruments indental
treatment exposed to risk of infection.
Prevention
Preventing Legionella pneumophila from living in all water supplies
would be the first method of preventing the spread of this bacteria.
This, however, is an extremely difficult task. The reason why it is so
difficult is because the bacteria live inside amoebae as well as
inside biofilms. Hence it is difficult to kill the bacteria because of
their increased resistance to many toxic substances while inside the
amoebae. Recent methods for destroying the bacteria, such as
passing UV light as well as hot water through pipes, has been found
to be very successful but expensive. It especially becomes
expensive when treating large amounts of water. Scientists are also
trying to discover biocides that are toxic to the bacteria, but safe for
humans. This research, however, is in its early stages and so far no
biocides have been uncovered. Finally there has been talk of
developing a vaccine, but that too is in its early stages.
Journal of the American Dental Association, Vol 126, Issue 5, 603-608
Copyright © 1995 by American Dental Association
Detecting Legionella pneumophila in water systems: a comparison of various dental units
SJ Challacombe and LL Fernandes
Department of Oral Medicine and Pathology, United Medical School, University of
London.
The authors sampled 194 dental units over a 44-month period to detect the
presence of Legionella pneumophila. They found L. pneumophila, usually in very
low numbers, in 25 percent of the units over this time. However, higher counts
were collected from 4 percent of the units, primarily from one model. The authors
document colony counts collected from nine different models and those collected
from air/water syringes vs. high-speed outlets, and they describe the effectiveness
of disinfection.
It will be useful to summarise what the general dental practitioner needs to
do to reduce the problem in his dental unit.
According to BDA recommendations, the following measures should be
implemented:
 Flushing of the water lines for 2 minutes every morning before treating the
first patient.
 Flushing of the water lines for 30 seconds between each two patients.
 The use of independent water system.
 The use of disinfectants such as H2O2 and NaClO.
 Avoidance the use of warm water in the DUWLs as the water should be kept
below 20° C.
 Draining of the DUWLs at the end of each day.
 Making sure that the anti-retraction valve in the handpiece is functional by
regular maintenance.