Sustainable Pathways for Algal Bioenergy
Download
Report
Transcript Sustainable Pathways for Algal Bioenergy
Sustainable Pathways for Algal Bioenergy
Does my algae freeze?
Michele Stanley and John Day
Scottish Association for Marine
Science
Sustainable Pathways for Algal Bioenergy
Sustainable Pathways for Algal Bioenergy
Biodiversity
Biological Resources
www.ccap.ac.uk
Sustainable Pathways for Algal Bioenergy
Value Pyramid for Algal Derived Products
(modified from Subitec Value Pyramid for Algae Product Markets in Bruton et al., 2009)
Sustainable Pathways for Algal Bioenergy
Case Study
Microalgaederived
nutraceuticals
Schlarb-Ridley & Parker
(2013). A UK Roadmap for
Algal Technologies for
NERC/TSB Algal Bioenergy
Special Interest Group.
Sustainable Pathways for Algal Bioenergy
Traditional maintenance of algal
cultures
Sustainable Pathways for Algal Bioenergy
Sustainable Pathways for Algal Bioenergy
Genotypic stability of algae
Options available to assess genotypic stability
Phenotypic
Whole genome
Targeted gene
Culture stability
• Morphological changes
• Changes in productivity
Options available to conserve
stability
• Cryopreservation
• Serial transfer
5
Sustainable Pathways for Algal Bioenergyµm
Observed phenotypic changes
Loss of spine production
Apparently irreversible cell shrinkage in diatoms
Loss of ketocarotenoid production
Changes in apical cell structure in filamentous
cyanobacteria
Loss of gas vacuole production
Change in phyco-biliprotein composition
Loss of alkaloid neurotoxin production
Sustainable Pathways for Algal Bioenergy
Strain
stability
Phenotype
Phaeocystis
antarctica
Gäbler-Schwarz et al.
Cryoletters (in press)
Sustainable Pathways for Algal Bioenergy
Why Long-term Preservation
• Prevent phenotypic change/ loss of
important attributes
• Prevent genotypic change in conserved
material
• Prevent loss of strain
• Reduce maintenance costs (staff &
consumables
Sustainable Pathways for Algal Bioenergy
Cryopreservation
Protocol validation
Cryoinjury studies
120
100
Viability level (%)
Protocol /
methodological
development
80
60
40
20
Cooling
Validating lab.
Validator
CRF Frsty
CCAP
CRF Frsty
SAG
CRF Frsty
ACOI
Internal
CRF Frsty
CCALA
CRF Frsty
ISB
CRF Frsty
CRF
ALGO
CABI
External
Sustainable Pathways for Algal Bioenergy
Evidence of genotypic & functional
stability of a transgenic diatom
Sustainable
Pathways
Algal
Bioenergy
Hipkin
et al. (infor
press)
J appl
Phycol
Genotypic stability of cryopreserved
Euglena gracilis CCAP 1224/5Z
AFLP analysis of reference strain and cryopreserved
E. gracilis - encapsulation, osmotic dehydration, 4 h
desiccation, methanol treatment, control rate
cooling and plunging into liquid nitrogen.
Harding et al. (2010) CryoLetters 31, 460-472.
Sustainable Pathways for Algal Bioenergy
Post-cryopreservation functional/
phenotypic stability
Sustainable Pathways for Algal Bioenergy
Hédoin et al. (2006) J. appl. Phycol. 18, 1-7.
Post-cryo functional/ phenotypic
stability
Total
carotenoids
(µg/g)
Zeaxanthin
(%)
carotene
(%)
Others
(%)
A-408
Contol
227 + 8
74.0
13.8
12.2
A-408
Post-thaw
192 + 5
74.2
12.5
13.3
A-408
Control
250 + 4
82.5
8.4
9.1
A-408
Post-thaw
326 + 6
75.6
13.2
11.2
Sample
Sustainable Pathways for Algal Bioenergy
Conclusions
Rapid expansion algal cultures
Production GMOs on increase
Large sums of money being invested
Move from biofuels to biotechnology
Still needs to be underpinned
Recent EnAlgae survey
– Demonstrated within some groups how little
though is being given to this
Sustainable Pathways for Algal Bioenergy
Financial support &
infrastructure
Scientific collaborators
Glyn Stacey (NIBSC, UK)
Thomas Mock & Rachel Hipkin (UEA, UK)
Peter Kroth & Matthias Buhmann (Konstanz, D)
Thomas Friedl & Maike Lorenz (SAG, D)
Steffi Gäbler-Schwarz (AWI, D)
Keith Harding & Erica Benson (DAMAR, UK)
KBBESeaBioTech
Josef Elster & Jaromir Lukavský (IB, CZ)
Alena Lukešová (ISB, CZ)
Katia Comte & Rosi Rippka (previously IP, F)
Sustainable Pathways for Algal Bioenergy