盛建中_Acid-base balance 2014
Download
Report
Transcript 盛建中_Acid-base balance 2014
Acid-Base Balance
Jianzhong Sheng MD, PhD
Department of Pathophysiology
School of Medicine
Zhejiang University
Objectives
Explain how the pH of the blood is stabilized by bicarb
buffer and define the terms acidosis and alkalosis.
Explain how the acid-base balance of the blood is affected
by CO2 and HCO3-, and describe the roles of the lungs and
kidneys in maintaining acid-base balance.
Explain how CO2 affects blood pH, and hypoventilation and
hyperventilation affect acid-base balance.
Explain how the interaction between plasma K+ and H+
concentrations affects the tubular secretion of these.
Normal Acid-Base Balance
Normal pH 7.35-7.45
Narrow normal range
Compatible with life 6.8 - 8.0
pH
6.8
death
【H+】 160
7.35
7.45
acidosis
alkalosis
40
7.8
death
16 nmol/L
Structure of AQP1
Hg++ inhibitory site
What are acidosis and
alkalosis
Normal pH: 7.40 (7.35-7.45)
Acidosis: pH<7.35; Alkalosis: pH>7.45
Simple types of acidosis: Metabolic
acidosis and Respiratory acidosis
Simple types of alkalosis: Metabolic
alkalosis and Respiratory alkalosis
Mixed types of acid-base disorders
pH
pH of blood is 7.35 to 7.45
pH = 6.1 + log [HCO3-]
0.03 x Pco2
Types of Acids in the Body
Volatile acids:
Can leave solution and enter the
atmosphere.
H2CO3 (carbonic acid).
Pco2 is most important factor in
pH of body tissues.
Types of Acids in the Body
Fixed Acids:
Acids that do not leave solution.
Sulfuric and phosphoric acid.
Catabolism of amino acids,
nucleic acids, and phospholipids.
Types of Acids in the Body
Organic Acids:
Byproducts of aerobic metabolism,
during anaerobic metabolism and
during starvation, diabetes.
Lactic acid, ketones.
Types of Acids in the Body
Organic Acids:
Byproducts of aerobic metabolism,
during anaerobic metabolism and
during starvation, diabetes.
Lactic acid, ketones.
Chemical Buffers
Act within fraction of a second.
Protein.
HCO3-.
Phosphate.
Proteins
COOH or NH2.
Largest pool of buffers in the body.
pk. close to pH in plasma.
Albumin, globulins such as Hb.
HCO3
pk. = 6.1.
Present in large quantities.
Open system.
Respiratory and renal systems act
on this buffer system.
Most important ECF buffer.
HCO3
Limitations
Cannot protect ECF from
respiratory problems.
Cannot protect ECF from elevated
or decreased CO2.
Limited by availability of HCO3-.
Phosphates
pk. = 6.8.
Low concentration in ECF, better
buffer in ICF, kidneys, and bone.
Respiratory System
2nd line of defense.
Acts within min. -maximal in 12-24
hrs.
H2CO3 produced converted to CO2,
and excreted by the lungs.
Alveolar ventilation also increases as
pH decreases (rate and depth).
Coarse , CANNOT eliminate fixed acid.
Urinary Buffers
Nephron cannot produce urine at
pH < 4.5.
IN order to excrete more H+, the
acid must be buffered.
H+ secreted into the urine tubule
and combines with HPO42- or NH3.
HPO42- + H+
H2PO4NH3 + H+
NH4+
Renal Acid-Base Regulation
Kidneys help regulate blood pH by excreting
H+ and reabsorbing HC03-.
Most of the H+ secretion occurs across the
walls of the PCT in exchange for Na+.
Antiport mechanism.
+ and H+ in opposite directions.
Moves Na
Normal urine normally is slightly acidic
because the kidneys reabsorb almost all HC03and excrete H+.
Returns blood pH back to normal range.
Reabsorption of
HCO3
Apical membranes of tubule cells are
impermeable to HCO3-.
Reabsorption is indirect.
When urine is acidic, HCO3- combines with H+ to
form H2CO3-, which is catalyzed by ca located in
the apical cell membrane of PCT (proximal convoluted tubule) .
As [CO2] increases in the filtrate, CO2 diffuses
into tubule cell and forms H2CO3.
- and H+.
H2CO3 dissociates to HCO3
HCO3- generated within tubule cell diffuses into
peritubular capillary.
Acidification of Urine
Na+ + HCO3-
H+
H+
H2CO3
H+ + HCO3-
CA
HPO42-
NH3
H2O + CO2
NH4 + H2PO4-
H2CO3
CA
CO2 + H2O
Urinary Buffers
Nephron cannot produce urine at
pH< 4.5.
In order to excrete more H+, the
acid must be buffered.
H+ secreted into the urine tubule
and combines with HPO42- or NH3.
HPO42- + H+
H2PO4NH3 + H+
NH4+
Anion Gap
The difference between [Na+] and
the sum of [HC03-] and [Cl-].
[Na+] – ([HC03-] + [Cl-]) =
140 - (24 + 105) = 11
Normal = 12 ± 2
Clinicians use the anion gap to
identify the cause of metabolic
acidosis.
Anion Gap
Law of electroneutrality:
Blood plasma contains an =
number of + and – charges.
The major cation is Na+.
Minor cations are K+, Ca2+ ,
Mg2+.
The major anions are HC03- and
Cl-.
(Routinely measured.)
Minor anions include albumin,
phosphate, sulfate (called
unmeasured anions).
Organic acid anions include
lactate and acetoacetate,.
Anion Gap
In metabolic acidosis, the strong
acid releases protons that are
buffered primarily by [HC03-].
This causes plasma [HC03-] to
decrease, shrinking the [HC03-]
on the ionogram.
Anions that remain from the
strong acid, are added to the
plasma.
If lactic acid is added, the
[lactate] rises.
Increasing the total
[unmeasured anions].
If HCl is added, the [Cl-] rises.
Decreasing the [HC03 ].
Anion Gap in Metabolic
Acidosis
Salicylates raise the gap to 20.
Renal failure raises gap to 25.
Diabetic ketoacidosis raises the gap
to 35-40.
Lactic acidosis raises the gap to >
35 (>50).
Largest gaps are caused by
ketoacidosis and lactic acidosis.
Simple Acid-Base
Disturbance
1. Metabolic acidosis
Concept: the primary disturbance is a decrease
of [HCO-3] in the arterial plasma
1) Cause and pathogenesis
lactic acidosis: hypoxia, diabetes
liver disease
ketoacidosis: diabetes, starvation
① Metabolic
acidosis in
severe renal failure: fixed acids
increased AG
salicylic acid
acid
poisoning:
intake food
GI:
(loss of
HCO-3)
② Metabolic
acidosis in
normal AG
Kidney:
(loss of
HCO-3)
diarrhea;
intestinal suction
intestinal fistula
biliary fistula
early renal failure:
NH3 secretion
H+ secretion
Renal tubular acidosis:
H+ secretion
depressant of C.A.
acetazolamide
intake of ClNaCl, NH4Cl
Hyperkalemia
2) Compensatory regulation
① Buffer:
② Respiratory compensation
③ Cellular compensation
④ Renal compensation
[H+]
: C.A.
H+ secretion
NH3 secretion
[HCO-3] / [H2CO3] = 20:1 compensation
acidosis
[HCO-3] / [H2CO3] < 20:1 decompensation
acidosis
(SB AB BB BE PaCO2 AB < SB)
Discussion of case 1
Method:
1. pH
2. primary factor and parameter
3. secondary factor and compensation
4. expected range of compensation
№1:
patient, female, 46, chronic pyelitis
pH
7.32 (Normal: 7.35-7.45)
PaCO2
28mmHg (Normal: 35-45mmHg)
SB
13.6mmol/L (Normal: 22-27mmol/L)
BE
-15.3mmol/L (Normal: -3.0-+3.0mmol/L)
3) Effect on body
① Cardiovascular system
hyperkalemia
arrhythmia
[H+]
contractility
peripheral resistance
② Central nervous system
[H+]
ATP , γ-amino butyric acid
(somnolence, coma)
4) Principles of treatment
① Correction of underlying disorders;
② Administration of NaHCO3;
③ Correction of water-electrolyte disturbances.
Summary of Metabolic
Acidosis
Gain of fixed acid or loss of
HCO3-.
Plasma HCO3 decreases.
PCO2 decreases.
pH decreases.
2. Respiratory acidosis
Concept: The primary disturbance is an
elevation in plasma [H2CO3]
1) Cause and pathogenesis
Barbital
depression of CNS head injury
①CO2 breathe paralysis of respiratory muscles
out
disease of airway or lung
chest injury
② Inhalation of CO2
2) Compensation
Buffer: Hb-/HHb
Cells:
exchange of H+ and K+
Kidney: secretion of H+ and NH3
(PaCO2 SB AB BB BE AB>SB)
3) Effect on body
① CNS
CO2
celebral vascular dilation, intracranial
pressure
headache、fatigue
CO2 narcosis
respiration
② Cardiovascular system
4) Principles of treatment
improve ventilation. Do not add NaHCO3
№2:
Patient, male, 45, chronic bronchitis
pH
7.26 (Normal: 7.35-7.45)
PaCO2 60mmHg (Normal: 35-45mmHg)
BB
46.2mmol/L (Normal: 45-55mmol/L)
SB
22mmol/L (Normal: 22-27mmol/L)
BE
-7.5mmol/L (Normal: -3.0-+3.0mmol/L)
after treatment
pH
7.34
PaCO2 70mmHg
BB
58mmol/L
BE
5.5mmol/L
Respiratory Acidosis
PCO2 increases.
Plasma HCO3 increases.
pH decreases.
3. Metabolic alkalosis
Concept: the primary disturbance is
an increase of [HCO-3] in the
arterial plasma
1) Causes and pathogenesis
① loss
of H+
digestive tract
vomiting; gastric suction(loss of HCl)
diuretics
distal flow rate
(furosemide) blood volume Ald
hyperaldosteronism H+-Na+exchange
kidney
H+-K+exchange between
hypokalemia intra- and extra-cell
renal secretion of H+
hypochloremia
renal secretion of H+
②intake
of base
NaHCO3
transfusion of banked blood (citrate)
Gastric fluid loss and AB balance
Esophagus
Blood vessel
Stomach
Cl
-
H+
HCO3-
H+
HCO3-
H2CO3
Pancreas
-
HCO3-
HCO3-
Na+
Duodenum
Cl
Cl H2CO3
H+
Na+
H+
Na+
2) Compensation of the body
① respiration
compensation are limited
(hypoxia)
② cells
compensation
hypokalemia
③ kidney pH
inhibition of carbonic
anhydrase (C.A.)
secretion of H+
(SB AB BB BE PaCO2 AB>SB)
3) Effects on body
inhibition of glutamate decarboxylase
① CNS
γ-amino butyric acid
dysphoria
insanity
pH
brain-vessel
dizziness
contraction
brain
delirium
O2 dissociation
hypoxia Coma
curve shifting to left
② neuromuscle pH
free Ca2+
③ hypokalemia
arrhythmia
tic
4) Principles of treatment
loss of H+ digestive tract
diuretic ; hypokalemia
0.9%NaCl; KCl
hyperaldosteronism
antisterone; diamox(乙酰唑胺)
Metabolic Alkalosis
Loss of fixed acid or gain of
HCO3-.
Plasma HCO3 increases.
PCO2 increases.
pH increases.
4. Respiratory alkalosis
Concept: the primary disturbance is
decrease of [H2CO3] in plasma
1) cause and pathogenesis
hypotonic hypoxia
pneumonia
hyperventilation hysteria, fever, [NH3]
hyperthyroidism
misoperation of ventilator
respiration (slight inhibition)
2) Compensation cells (exchange of H+-K+)
kidney secretion of H+
(PaCO2 ; SB AB BB BE ; AB<SB)
3) Effects on body
It is as same as metabolic alkalosis.
dizziness and convulsion are happened easily
4) Principles of treatment
inhalation of 5%CO2
Mixed acid-base disturbance
1. Dual acid-base disturbance
1) metabolic acidosis plus respiratory acidosis
heart beat
[HCO-3]
stop
character
pH
respiration
PaCO2
2) metabolic alkalosis plus respiratory alkalosis
hepatic NH3
PaCO2
character [HCO- ]
pH
failure diuretic
3
3) respiratory acidosis plus metabolic alkalosis
pulmonary heart disease
diuretic
pH ±
4) respiratory alkalosis plus metabolic acidosis
infective shock
fever
pH ±
5) metabolic acidosis plus metabolic alkalosis
ketoacidosis(diabetes)
vomiting
pH ±
2. triple acid-base disturbance
1) respiratory acidosis; metabolic acidosis
and alkalosis
pulmonary heart disease; vomiting
2) respiratory alkalosis; metabolic acidosis
and metabolic alkalosis
fever; vomiting; diarrhea (food poisoning)
№3.
Patient, male, 47, purulent appendicitis. He
was treated with abdominal suction and
persistent gastrointestinal decompression
after operation.
pH
PaCO2
SB
BE
K+
Cl-
7.56 (Normal: 35-45mmHg)
50mmHg (Normal: 35-45mmol/L)
34mmol/L (Normal: 22-27mmol/L)
10mmol/L (Normal: -3.0-+3.0mmol/L)
3.2mmol/L (Normal: 3.5-5.5mmol/L)
105mmol/L (Normal: 103mmol/L)
Respiratory Alkalosis
PCO2 decreases.
Plasma HCO3 decreases.
pH increases.
The scope of compensatory
responses of acid-base disorders
Acute respiratory acidosis: △[HCO-3]=0.1×△PaCO2 ±1.5
Chronic respiratory acidosis: △[HCO-3]=0.4×△PaCO2
±3.0
Acute respiratory alkalosis: △[HCO-3]=0.2×△PaCO2 ±2.5
Chronic respiratory alkalosis: △[HCO-3]=0.5×△PaCO2
±2.5
Metabolic acidosis: △PaCO2 =1.2×△[HCO-3] ±2.0
Metabolic alkalosis: △PaCO2 =0.7×△[HCO-3] ±5.0
Summary of Simple ABD
1. 概念:
根据原发变化因素及方向命名
2. 代偿变化规律:
代偿变化与原发变化方向一致
代偿变化规律
代酸
[HCO-3]
[H2CO3]↓
代碱
[HCO-3]
[H2CO3]↑
呼酸
[HCO-3]↑
[H2CO3]
呼碱
[HCO-3]↓
[H2CO3]
3. 基本特征:
呼吸性ABD,血液pH与其它指标变化方
向相反
代谢性ABD,血液pH与其它指标变化方
向相同
4. 原因和机制
代酸:
固定酸生成↑及HCO3-丢失↑→HCO3-降低
呼酸:
CO2排出减少吸入过多,使血浆[H2CO3]升高
代碱:
H+丢失, HCO3-过量负荷,血HCO3-增多
呼碱:
通气过度CO2呼出过多,使血中[H2CO3]降低
对机体的影响
CNS
离子改变
酸中毒 抑制性紊乱 血钾增高
其它
血管麻痹
心律失常
收缩力降低
碱中毒 兴奋性紊乱 血钾降低 肌肉痉挛
或麻痹
6. 代偿调节
1. 代谢性ABD:各调节机制都起作用,尤
其是肺和肾
2. 呼吸性ABD:肺一般不起作用;
急性紊乱细胞内外二对离子交换;
慢性紊乱肾调节
酸碱平衡紊乱类型的判断
一划五看简易判断法
一划:将多种指标简化成三
项,并用箭头表示其升降
SB AB BB↓,BE(-)↑
pH
[HCO3-]
[H2CO3]
[H+]
PaCO2↓
五看:
一看pH定酸碱
1 pH升高:失偿型碱中毒
pH降低:失偿型酸中毒
2 pH正常可能是
(1) 酸碱平衡
(2) 代偿性单纯性ABD
(3)混合性相消型ABD
二看原发因素定代呼
1.病史中有"获酸","失碱"或
相反情况,为代谢性ABD
2.病史中有肺过度通气或相反情况,
为呼吸性 ABD
例1
病史?
[HCO-3]↓
[H2CO3]↓
pH N
三看“继发性变化”定单混
1 "继发性变化"的方向
(1) 与原发性变化方向一致:
单纯型ABD or 混合型ABD
(2)与原发性变化方向相反:
混合型
例2
PaCO2↑,HCO-3↓,
pH ↓↓↓
例3
PaCO2↑
HCO-3↑
pH 接近正常
2.“继发性变化”的数值
(代偿预计值)
(1)数值在代偿预计值范围内,为单
纯型ABD
(2)数值明显超过或低于代偿预计值,
为混合型ABD
四看AG定单混,定两三
1.AG升高>14mmol/L,提示有代酸,
> 30 mmol/L肯定有代酸
2 在AG增高型代酸,AG增高数=[HCO3-]
降低数.即ΔAG=Δ[HCO3-]
潜在[HCO3-]=[HCO3-]实测值+ΔAG
例7
一位肺心病合并腹泻病人,
pH = 7.12, PaCO2 = 84.6 mmHg,
HCO-3 = 26.6mmol/L,
Na+= 137 mmol/L,Cl-=85 mmol/L。该病
人发生何种酸碱平衡紊乱?
AG = Na+- (HCO-3 + Cl- )= 137-(26.6+85)
= 25.4 mmol/L
五看临床表现做参考
Discussion of cases
Method:
1. pH
2. primary factor and parameter
3. secondary factor and compensation
4. expected range of compensation
№1:
patient, female, 46, chronic pyelitis
pH
7.32 (Normal: 7.35-7.45)
PaCO2
28mmHg (Normal: 35-45mmHg)
SB
13.6mmol/L (Normal: 22-27mmol/L)
BE
-15.3mmol/L (Normal: -3.0-+3.0mmol/L)
№2:
Patient, male, 45, chronic bronchitis
pH
7.26 (Normal: 7.35-7.45)
PaCO2 60mmHg (Normal: 35-45mmHg)
BB
46.2mmol/L (Normal: 45-55mmol/L)
SB
22mmol/L (Normal: 22-27mmol/L)
BE
-7.5mmol/L (Normal: -3.0-+3.0mmol/L)
after treatment
pH
7.34
PaCO2 70mmHg
BB
58mmol/L
BE
5.5mmol/L
№3.
Patient, male, 47, purulent appendicitis. He
was treated with abdominal suction and
persistent gastrointestinal decompression
after operation.
pH
PaCO2
SB
BE
K+
Cl-
7.56 (Normal: 35-45mmHg)
50mmHg (Normal: 35-45mmol/L)
34mmol/L (Normal: 22-27mmol/L)
10mmol/L (Normal: -3.0-+3.0mmol/L)
3.2mmol/L (Normal: 3.5-5.5mmol/L)
105mmol/L (Normal: 103mmol/L)
№4.
患儿, 3个月, 入院前一天开始发热、呕
吐、水样便20+次/日,伴烦躁、烦渴。
查体:T 39.8℃,嗜睡,醒后烦躁,皮肤
弹性差,明显腹胀。
处理:庆大霉素抗感染,静脉点滴生理盐水
1200ml.
次日病情加重,极烦渴,呼吸深,惊厥,
昏迷,并发肠麻痹死亡。
Thank you