Saule un zeme

Download Report

Transcript Saule un zeme

Saule zemē
Dod patīkamu sajutu un siltumu, ja
vien Jūs neesat
Un Jums maz ūdens
Saule un Daba
Saule un Daba
In 1988, Dr. Michael Graetzel
Cilvēks, kas izgudroja jaunu saules elementa veidu:
Ja ir stikls ar elektrovadošu un
caurspīdīgu pārklājumu ITO
ITO stikls
ITO = indium tin oxide = indija un alvas oksīdi,
kas veido elektrovadošo pārklājumu
ITO = InO2 + SnO2
Stikls
Ko var pārklāt ar plāno TiO2
nanokristālu pastas slāni
TiO2 pastas pārklājums
ITO
Stikls
TiO2
TiO2
TiO2
ITO
TiO2 pārklājums
ITO
Stikls
Izkarsēt TiO2 lai savienot tās
daļiņas savā starpā
TiO2
TiO2
TiO2
450C
TiO2
TiO2
TiO2
ITO
TiO2 pārklājums
ITO
Stikls
ITO
Keramika, kur TiO2 daļiņas ir:
•ķīmiski saistīti savā starpā un ar ITO
•tās struktūrai ir ļoti liels virsmas laukums
TiO2
TiO2
TiO2
ITO
Nokrāsot ar krāsvielu kas ir :
Avenēs
Vai arī kazenēs
Granātābolā
Der VISAS !!!
Sanāk dīvaini?
TiO2 pārklājums + Krāsviela
ITO
Stikls
Pēc mērcēšanas
Ko lai izdara Vēl???
Paņemt vēl vienu ITO
Uzlikt pirmai
elementa pusei virsu
Stikls
ITO
TiO2 pārklājums+ + Krāsviela
ITO
Stikls
Starp divām ITO plāksnēm izveidot
spraugu, ieliekot polietilēna plēvi
Stikls
ITO
TiO2 pārklājums+ + Krāsviela
Polietilēns
ITO
Stikls
Pieliekam stiprinājumus
Vajag mērci! --- Elektrolītu
I2/ I3+
šķidrums
Lejam elektrolītu spraugā
Elektrolīts
Stikls
ITO
TiO2 pārklājums+ + Krāsviela
ITO
Stikls
Ēdiens ir gatavs.
Sanāk saules elements!!!
Ko var uztaisīt ikviens !!!
Paldies skolniecēm!!!
Antra Dilāne
Anete Kleinberga
RFL 12.c
Ja ogas sulu aizvietot ar
• TiO2 saules elementu efektivitāte ir >11%
Šo saules elementu efektivitāte ir
ap 0,1%
Vislabākie rezultāti ir iegūtie ar
ekstrahētam no Jaboticaba (ISC
= 9 mAcm-2, VOC=0.59 V) un
Calafate (6 mAcm-2, 0.47 V)
ogu sulu antocianiniem.
Jaboticaba
Pārējie antocianini, ekstrahēti no
ērkšķogu sulas dod pārvēršanas
efektivitāti ap 0.56 %
Best result
Visefektivakie saules elementi
Silicija bāzes saules elementu efektivitāte
Tips
Effektivitāte
Laboratorijas
Apstakļos %
Effektivitāte
Komercialā
Izstradajumā %
Monokristāliskai
s
24
14-17
polikristāliskais
18
13-15
amorfs
13
5-7
Par virsmas porainību liecinā
The table below
lists the physical
and
chemical
properties of
Titanium (IV)
Oxide Nanopowder
http://www.azonano.com/details.asp?ArticleId=2282
CAS Number
1317-80-2
MDL Number
MFCD00011269
Molecular Formula
TiO2
Molecular Weight
79.90
Color and Form
white powder
Specific Surface Area (BET)
≥500 m2/g
Crystallite Size
Amorphous
Average Pore Diameter
32Å
Total Pore Volume
≥0.4 cc/g
Bulk Density
0.6 g/cc
True Density
3.7 g/cc
Mean Aggregate Size
5μm
Loss on Ignition
≤12%
Moisture Content
≤4%
Ce Content (Based on Metal)
≥99.999%
Solaronix
•
•
•
•
•
A series of calibrated current-voltage measurements of sealed Dye Solar Cells were carried out by the Fraunhofer
Institut für Solare Energiesysteme (Freiburg, Germany). An efficiency of 10 % was obtained by the solar cells
assembled at the EPFL in Lausanne (simulated sunlight AM 1.5, 1000 W/m2).
•
Fig: 5. Current-Voltage plot of a Dye Solar Cell of 0.257 cm2
(eff. = 10 %, AM 1.5, VOC = 823 mV, ISC = 16.9 mA/cm2, ff = 72.5 %)
Such performances were achieved with the bis-tetrabutylammonium salt of Ru(dcbpy)2(NCS)2 as a sensitizing dye
(Ruthenium 535-bisTBA). Using a salt instead of the protonated sensitizer (Ruthenium 535) prevents an
irreversible votage drop in the solar cell due to a too high acidity during dye adsorption on the TiO 2. In addition, the
electrolyte is based on acetonitrile and organic iodide salt.
When operating in a solar cell the sensitizer S gets excited by the visible light. Then it gets oxidized due to charge
injection, and recycled by iodide reduction. The rate constants for charge injection and iodide reduction are at least
109 times higher than the rate constants for excited and oxidized state degradation. The sensitizer should be able
to undergo around one billion cycles without significant degradation. Side reactions such as sensitization of
oxygen are efficiently suppressed due to ultrafast electron injection into TiO2.
Solaronix has performed a variety of studies concerning the stability of the sensitzer, the electrolyte, the redox
couple, and the sealing of solar cells. The Ru(dcbpy)2(NCS)2 sensitizer has been validated for a commercial
application. Light soaking experiments on photovoltaic devices at different temperatures have proved the longterm stability of this sensitizing dye. The liquid electrolyte has can be encapsulated for many years under thermal
cycling with the suitable sealing material chemically inert to triiodide.
Dye solar cells from Solaronix showed a remarkable photochemical stability under intense and continous light
irradiation. After 6000 hours at full sunlight, corresponding to about seven years of outside light exposure in central
Europe, no loss of tri-iodide or chemical transformation of the sensitizer was observed. Heating of a test solar cell
at 70°C for 1000 hours under irradiation did not affect the conversion efficiency, indicating an excellent chemical
stability.
Indola atvasinājumi
• Indole occurs naturally as a building block in the amino acid
tryptophan, in
• dyes and many alkaloids. Substituted with an electron withdrawing
anchoring
• group on the benzene ring and an electron donating group on the
nitrogen
• atom, these dyes have a great potential as sensitizers. A remarkable
efficiency
• of 6.1 % with D102 was published in 2003 which triggered a number
of subsequent studies. By
• Optimizing the substituents, an efficiency of 8 % was achieved with
D149
• This value was even exceeded recently by optimizing the TiO2layer properties (9 % )