Pre – AP Biology

Download Report

Transcript Pre – AP Biology

AP Biology
Living Metabolism
Part 2
Proteins
2’ structure
.
Free energy
Course of
reaction
without
enzyme
EA
without
enzyme
EA with
enzyme
is lower
Reactants
Course of
reaction
with enzyme
DG is unaffected
by enzyme
Products
Progress of the reaction
.
Substrate
Active site
Enzyme
Enzyme-substrate
complex
.
Substrates enter active site; enzyme
changes shape so its active site
embraces the substrates (induced fit).
Substrates held in
active site by weak
interactions, such as
hydrogen bonds and
ionic bonds.
Substrates
Enzyme-substrate
complex
Active
site is
available
for two new
substrate
molecules.
Enzyme
Products are
released.
Substrates are
converted into
products.
Products
Active site (and R groups of
its amino acids) can lower EA
and speed up a reaction by
• acting as a template for
substrate orientation,
• stressing the substrates
and stabilizing the
transition state,
• providing a favorable
microenvironment,
• participating directly in the
catalytic reaction.
R groups of Amino Acids
Optimal Performance
2’ structure
3’ Structure
Denaturation of a protein
.
A substrate can
bind normally to the
active site of an
enzyme.
Substrate
Active site
Enzyme
Normal binding
A competitive
inhibitor mimics the
substrate, competing
for the active site.
Competitive
inhibitor
Competitive inhibition
A noncompetitive
inhibitor binds to the
enzyme away from the
active site, altering the
conformation of the
enzyme so that its
active site no longer
functions.
Noncompetitive inhibitor
Noncompetitive inhibition
Reaction rates for each condition
.
Allosteric enzyme
with four subunits
Regulatory
site (one
of four)
Active site
(one of four)
Activator
Active form
Oscillation
Nonfunctional
active site
Allosteric activator
stabilizes active form.
Inactive form
Stabilized active form
Allosteric inhibitor
stabilizes inactive form.
Inhibitor
Allosteric activators and inhibitors
Stabilized inactive
form
Feedback
Inhibition or
Negative Feedback
Initial substrate
(threonine)
Active site
available
Isoleucine
used up by
cell
Threonine
in active site
Enzyme 1
(threonine
deaminase)
Intermediate A
Feedback
inhibition
Enzyme 2
Active site of
enzyme 1 can’t
bind
Intermediate B
theonine
pathway off
Enzyme 3
Isoleucine
binds to
allosteric
site
Intermediate C
Enzyme 4
Intermediate D
Enzyme 5
End product
(isoleucine)
.
Binding of one substrate molecule to
active site of one subunit locks all
subunits in active conformation.
Substrate
Inactive form
Stabilized active form
Cooperativity another type of allosteric activation
Proteins involved
in constructing a
red blood cell
Quaternary
Structure
Polypeptide
chain
b Chains
Iron
Heme
Polypeptide chain
Collagen
a Chains
Hemoglobin