Presentation - Broad Institute

Download Report

Transcript Presentation - Broad Institute

Relating Activating K-Ras Mutations
to Small Molecule Sensitivity in NonSmall-Cell Lung Cancer
Flavian D. Brown
Carleton College
Class of 2009
Lung Cancer
 Leading cause of death from cancer in the world
 Over 90% of NSCLC contain mutations in
EGFR, BRAF and K-Ras
 Discovery of Gefitnib
Ras Signaling
←
Oncogenic
Mutation
←
Oncogenic
Mutation
←
Schubbert et al. (2007) Hyperactive Ras in developmental disorders and cancer. Nature Review of Cancer, Vol. 7 295-307.
Hypothesis
 NSCLC tumors are genetically sensitized due to
changes in cellular state secondary to activating KRas mutations.
- Different drug targets
- Oncogene Addiction
Small Molecule Screens
Pin Transfer
250
500
1000
100nl
cell adherence
24 Hrs
2-10Hrs
+ DMSO Control
48Hrs
72Hrs
Hits From Primary Screen
A549: Hits Highlighted
Color coding on the images:
Red = unbiased commercial compound Forma set
Green = bioactives (including kinase inhibiting drugs)
Magenta = HDAC biased DOS
Blue = commercial kinase biased (CBkinase)
Yellow = analyticon purified natural products
Black = DMSO control plate
Gray = +con dose plate
Assay Development
H1792
Fluorescence (535/595nm)
70000000
60000000
50000000
2hr
40000000
4hr
30000000
6hr
8hr
20000000
10000000
0
0
200
400
600
Cells/Well
800
1000
1200
Small Molecule Sensitivity
16
14
IC50 (µmol)
12
10
8
6
4
2
0
A549 (K-Ras)
H460 (K-Ras)
H1792 (K-Ras)
H1975 (EGFR)
Cell Lines
H1650 (EGFR)
H1395 (BRAF)
Small Molecule Sensitivity
18
16
IC50 (µmol)
14
12
10
8
6
4
2
0
A549 (K-Ras)
H460 (K-Ras)
H1792 (K-Ras)
H1975 (EGFR)
Cell Lines
H1650 (EGFR)
H1395 (BRAF)
Small Molecule Sensitivity
16
14
IC50 (umol)
12
10
8
6
4
2
0
A549 (K-Ras)
H460 (K-Ras)
H1792 (K-Ras)
H1975 (EGFR)
Cell Lines
H1650 (EGFR)
H1395 (BRAF)
Structural Activity Relationship
Br
O
H
N
OH
N
N
H
O
I
O
O
N
OH
N
H
N
H
O
OH
NH
N
HN
O
Aromatic group at the
opposite end of
structures
Carbon spacer can be
rigid or flexible
Hydroxamic acids
attached to a 4 or 5
carbon chain
Future Investigations
 Analyze signaling downstream of the activating
mutation
-Immunofluorescence
-Western Blotting
Target Identification
- Pull down assay
 Correlate phenotypic data with genetic data
- SNP copy number
Impact
 Genotype specific inhibitors for K-Ras
mutants
 Paradigm for investigating genotypephenotype relationships in other malignancies
- WGAS for somatic alterations
 Molecularly targeted cancer therapeutics.
Acknowledgements
Principle Investigator
-
Stuart L.Schreiber, Ph.D
Mentor
-
Gopal S. Ramachandran, Ph.D
Summer Research Program in Genomics
-
Shawna Young
Lucia Vielma
Maura L. Silverstein
Bruce Birren, Ph.D
Collaborators
Broad Institute Screening
-
-
Jordi Barretina, Ph.D
Damian W. Young, Ph.D
Nicola Tolliday, Ph.D
Josh Bittker, Ph.D
Melanie de Silva
Kate Hartland
References
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Arcaro, A. The small GTP-binding protein Rac promotes the dissociation of gelsolin from actin filaments
in neutrophils. J. Biol.Chem. 273, 805–813 (1998)
Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: a conserved switch for diverse
cell functions. Nature 348, 125–132 (1990).
Diaz et al. Complex effects of Ras proto-oncogenes in tumorigenesis. Carcinogenesis, Vol. 25, No. 4, 535539 (2004).
Downward, J. Targeting RAS signaling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003).
Gibbs, J. B. & Oliff, A. The potential of farnesyltransferase inhibitors as cancer chemotherapeutics. Annu.
Rev. Pharmacol. Toxicol. 143–166 (1997).
Herrmann, C. Ras–effector interactions: after one decade. Curr. Opin. Struct. Biol. 13, 122–129 (2003)
Lynch et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of
non-small-cell lung cancer to gefitinib. The New England Journal of Medicine. Vol. 350 No.21, 2129-2139.
(2004)
Paez, et al. EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy.
Science. 304, 1497 (2004).
Repasky, G. A., Chenette, E. J. & Der, C. J. Renewing the conspiracy theory debate: does Raf function
alone to mediate Ras oncogenesis? Trends Cell Biol. 14, 639–647 (2004).
Schubbert et al. Hyperactive Ras in developmental disorders and cancer. Nature, Vol. 7 295-307. (2007)
Swanson et al.; Raymond, J. Hohl. Anti-Cancer Therapy: Targeting the Mevalonate. Current Cancer Drug
Target 2006, 6, 15-37
Vetter, I. R. & Wittinghofer, A. The guanine nucleotidebinding switch in three dimensions. Science 294,
1299–1304 (2001).
Zhang et al. Knockdown of Mutant K-ras Expression by Adenovirus-Mediated siRNA Inhibits the In Vitro
and in Vivo Growth of Lung Cancer Cells. Cancer Biology and Therapy 1481-1486 (2006)
Zhang et al. Silencing the epidermal growth factor receptor gene with RNAi may be developed as a
potential therapy for non small lung cancer. Genetic Vaccines and Therapy 3:5 (2005)