SimonCox_IntoductionToGeoSciML

Download Report

Transcript SimonCox_IntoductionToGeoSciML

Introduction to GeoSciML:
standard encoding for transfer of geoscience information
Simon Cox
CSIRO Exploration and Mining
11 September 2006
www.csiro.au
Motivation
International geologic map data interoperability
 availability of technologies for open geospatial standards (OGC, ISO)
 commitment to these standards by many national data providers
 international collaboration initiated in Edinburgh 2003, under IUGS-CGI
Canada
USA
UK
France
Denmark
Germany
Sweden
Korea
Finland
Japan
Netherlands
Australia
Poland
Czech
Goals of IUGS-CGI Interoperability Workgroup
Geologic map data schematic interoperability
 develop a standard GML schema for data transfer in WFS and WMS
 conduct a multi-country testbed
 demonstrate the need for transfer standards for data content
GSC
Oracle,
ESRI
GSC
schema
USGS
USGS
ESRI
schema
BRGM
BRGM
schema
BGS
BGS
schema
SGU
SGU
schema
GA
Oracle, ESRI
GA
schema
WMS
WFS
WMS
WFS
WMS
WFS
GML
Client
WMS
WFS
WMS
WFS
WMS
WFS
Scope: information required for production and
maintenance of geologic maps
Mapped Features
 units, structures
GeoSciML v1.1
(testbed)
Legend
 unit description
 stratigraphic column, other classifications
 Geologic timescales
GeoSciML v2
Borehole data
Field observations & measurements
 structure measurements, material descriptions …
Lab measurements
 geochem, geochronology
Precursors
NADM – US/Canada
 geologic instances and classifications – UML
BRGM – France
 Boreholes, solid geology
BGS – DGSM – UK
 3D geology
XMML - eXploration and Mining Markup Language
 Mineral exploration data – GML
Scope
Mapped Features
 units, structures
GeoSciML v1.1
(testbed)
Legend
~ NADM model,
GML encoding
 unit description
 stratigraphic column, other classifications
 Geologic timescales
GeoSciML v2
Borehole data
Field observations & measurements
~ XMML,
BGS, BRGM
OGC
 structure measurements, material descriptions … sensor-web
Lab measurements
 geochem, geochronology
Modelling methodology
1. Design using pictures
•
UML class diagrams
•
adopt and adapt existing & external standards, influence if possible
2. Prove it with Code
•
Use sample XML documents to test the model as you go
3. Generate code (XML Schema) automatically
•
maintain the model using the diagrams, not the validation tooling
Compliant with ISO/TC 211
& Open Geospatial Consortium standards
Example feature-type
<sa:Specimen gml:id="sp1"
…>
<gml:description>Specimen test instance</gml:description>
<gml:name>Specimen test 1</gml:name>
<sa:location>
…
</sa:location>
<sa:sampledOn xlink:href="http://my.big.org/station/st13"/>
<sa:sampleTime ></gml:TimeInstant …
/></sa:sampleTime >
<sa:material codeSpace=“urn:x-seegrid:lexicon:specimenType">chips</sa:material>
<sa:mass uom=“kg">0.35</sa:mass>
<sa:reportingSpecimen xlink:href="http://my.big.org/specimen/sp34"/>
<sa:processingStep>
…
</sa:processingStep>
<sa:processingStep xlink:href="http://my.big.org/pst/p98"/>
<sa:relatedObservation xlink:href="http://my.big.org/obs/m45"/>
</sa:Specimen>
Descriptions and occurrences
«Type»
GM_Obj ect
+shape
«FeatureType»
SamplingFeature
+
1
«FeatureType»
MappedFeature
+samplingFrame
responsible: CI_ResponsibleParty [0..1] 1
«ObjectType»
ControlledConcept
+occurrence
0..*
+
preferredName: CharacterString
Description
+classifier
1
definingNorm:
instance:
typicalNorm:
PrimaryClassification
«FeatureType»
GeologicFeature
«CodeList»
DescriptionPurpose
+
+
+
+specification
+
+
+
1
0..*
+alternativeClassifier
AlternativeClassification
age: GeologicAge [1..*]
0..*
physicalProperty: CGI_PhysicalDescription [0..*]
purpose: DescriptionPurpose = instance
Map polygon
0..*
Observational setting
Legend item
«FeatureType»
GeologicStructure
«FeatureType»
GeologicUnit
+
genesis: CGI_TermValue [0..1]
Descriptive values
«DataType»
CGI_Value
+
qualifier: ValueQualifierCode [0..1] = equalTo
e.g. “Usually 2mm to boulder-sized”
«DataType»
CGI_TermRange
«DataType»
CGI_Range
«DataType»
CGI_NumericRange
+upper +lower
1
+upper
1 +lower
1
1
«DataType»
CGI_PrimitiveValue
+upper
+
+
+
value: ScopedName
«Union»
CGI_Term
+
+
range: CGI_TermRange
value: CGI_TermValue
ScopedName = label + vocabulary reference
1
«DataType»
CGI_NumericValue
«DataType»
CGI_TermValue
+
1 +lower
minusDelta: Measure
plusDelta: Measure
principalValue: Measure
«Union»
CGI_Numeric
+
+
range: CGI_NumericRange
value: CGI_NumericValue
Measure = number + uom
Progress to date
Achievements
 GeoSciML 1.x defined (but not documented)
 Testbed 1 implemented (2 countries, 2 sites)
 Testbed 2 implemented (6 countries, 8 sites)
 GeoSciML 2.0 scoped
<LithodemicUnit gml:id="GSV53">
<gml:description>Granite, syenite, volcanogenic sandstone,
conglomerate, minor trachyte lava</gml:description>
«FeatureT ype»
GUGenesis
GeologicProcess
Rank
CGI_Top::GeologicFeature
<gml:name>Mount
Leinster Igneous Complex</gml:name>
0..*
0..1
+ age: GeologicAge [1..*]
0..*
0..*
<purpose>typicalNorm</purpose>
+ purpose: DescriptionPurpose
WeatheringCharacter
GURole
<age>
0..1
0..* 0..*
2
1..1
<GeologicAge>
GeologicUnit
0..1
GeologicUnitPart
OutcropCharacter
<value>
0..*
«FeatureT ype»
2..n
<<IsA>>
<CGI_TermRange>
0..1
GeologicUnit
<<IsA>>
Proportion
1..1
or
GeologicAge
<lower>
+ bodyMorphology: CGI_T ermValue [1..*]
+ exposureColor: CGI_T ermValue [1..*]
<CGI_TermValue>
CompoundMaterial + genesis: CGI_T ermValue [1..*]
GUPRelationRole
Extent
1..1
+ grossChemistry: ChemicalCompositionClass
<value codeSpace="http://www.iugs+ outcropCharacter: CGI_T ermValue [1..*]
cgi.org/geologicAgeVocabulary">Triassic</value>
0..*
Morphology
0..1
GUPRelation
</CGI_TermValue>
</lower>
0..*
Color
<upper>
«FeatureT ype»
LithologicUnit
<CGI_TermValue>
+ rank: ScopedName
MetamorphicGrade 0..1
<value codeSpace="http://www.iugs+ weatheringCharacter: CGI_T ermValue [1..*]
+ structurePresent: CGI_T ermValue [0..*]
cgi.org/geologicAgeVocabulary">Triassic</value>
CGI_T
erm [0..*]
Pedoderm + metamorphicGrade:
LithotectonicUnit
GeomorphologicUnit
</CGI_TermValue>
</upper>
</CGI_TermRange>
«FeatureT ype»
</value>
LithodemicUnit
LithostratigraphicUnit
ype»
BiostratigraphicUnit«FeatureT
AllostratigraphicUnit
PedostratigraphicUnit
LithodemicUnit
<event>
+ unitT hickness: CGI_Numeric [1..*]
+ beddingStyle: CGI_T ermValue [1..*]
<CGI_TermValue>
+
beddingPattern:
CGI_T
ermValue
[1..*]
LithostratigraphicUnit
ChronostratigraphicUnit
MagnetostratigraphicUnit
conceptual
model:
+ beddingT hickness: CGI_Value [1..*]
<value codeSpace="http://www.iugslogical model: GML-UML
physical model: GML-XML
no GML
cgi.org/geologicAgeEventVocabulary">intrusion</value>
cd Unit
AbstractFeature
Testbed results
Use-case 1: query feature

Query one map feature (e.g. a geologic unit) and return GeoSciML
Testbed results
Use-case 2: download features

Download map features in view as GeoSciML
Testbed results
Use-case 3: re-classify features

Use standard legend (symbols, terms) for rock types and ages
Community interoperability
GSC
Oracle,
ESRI
GSC
schema
USGS
USGS
ESRI
schema
BRGM
BRGM
schema
BGS
BGS
schema
SGU
SGU
schema
GA
Oracle, ESRI
GA
schema
WMS
WFS
WMS
WFS
WMS
WFS
GML
Client
WMS
WFS
WMS
WFS
WMS
WFS
Geospatial interoperability stack
Schematic and semantic interoperability in OGC framework:
interoperability
semantic
schematic
GeoOntology (data content, classifications and vocabularies)
GeoSciML (data structure)
Geoscience
OGC
syntax
systems
GML (data syntax)
WFS, WMS, WCS, … (data systems)
Inclusive process
IUGS Mandate
“Regular” meetings
 Edinburgh, 2003
 Ottawa, Perth, 2004
 Ottawa, 2005
 Orleans, Bruxelles, 2006
New participants added
 GA, BRGM, SGU in 2006
Web collaboration tools
Interoperability Testbeds
 includes COTS software
 industry partnerships
Status and future plans
GeoSciML v1.1 – for 2006 testbed
GeoSciML v2.0 – work already commenced
Documentation – 2006/07
 will include conformance tests to assist procurement guidelines, and as guide to
software developers
 to be submitted for formal adoption by IUGS
Vocabulary standardization
 GeoSciML provides “structural” information model to house information
 for full interoperability, property value-spaces must also be harmonized
Portals and Registries
 support discovery, service-chain composition
https://www.seegrid.csiro.au/twiki/bin/view/CGIModel/GeoSciML
GeoSciML design team
Boyan Brodaric, Eric Boisvert – GSC
Steve Richard – Arizona GS
Bruce Johnson – USGS
John Laxton, Tim Duffy, Marcus Sen – BGS
Bruce Simons, Alistair Ritchie – GSVic
Ollie Raymond, Lesley Wyborn – GA
Simon Cox – CSIRO
+ for testbed: Dale Percival – GA, Joost Van Ulden – GSC
Francois Robida, Jean-Jacques Serrano, Christian Bellier,
Dominique Janjou – BRGM
Lars Stolen, Jonas Holmberg, Thomas Lundberg – SGU
CSIRO Exploration and Mining
Name
Simon Cox
Title
Research Scientist
Phone
+61 8 6436 8639
Email
[email protected]
Web
www.seegrid.csiro.au
Thank You
www.csiro.au