Transcript now

Data Mining
Classification: Basic Concepts, Decision
Trees, and Model Evaluation
Lecture Notes for Chapter 4
Introduction to Data Mining
By Tan, Steinbach, Kumar
Lecture 3
Basic Classification
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
1
Classification: Definition

Given a collection of records (training set )
– Each record contains a set of attributes, one of the
attributes is the class.


Find a model for class attribute as a function
of the values of other attributes.
Goal: previously unseen records should be
assigned a class as accurately as possible.
– A test set is used to determine the accuracy of the
model. Usually, the given data set is divided into
training and test sets, with training set used to build
the model and test set used to validate it.
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Illustrating Classification Task
Tid
Attrib1
Attrib2
Attrib3
1
Yes
Large
125K
No
2
No
Medium
100K
No
3
No
Small
70K
No
4
Yes
Medium
120K
No
5
No
Large
95K
Yes
6
No
Medium
60K
No
7
Yes
Large
220K
No
8
No
Small
85K
Yes
9
No
Medium
75K
No
10
No
Small
90K
Yes
Learning
algorithm
Class
Induction
Learn
Model
Model
10
Training Set
Tid
Attrib1
Attrib2
Attrib3
11
No
Small
55K
?
12
Yes
Medium
80K
?
13
Yes
Large
110K
?
14
No
Small
95K
?
15
No
Large
67K
?
Apply
Model
Class
Deduction
10
Test Set
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Examples of Classification Task

Predicting tumor cells as benign or malignant

Classifying credit card transactions
as legitimate or fraudulent

Classifying secondary structures of protein
as alpha-helix, beta-sheet, or random
coil

Categorizing news stories as finance,
weather, entertainment, sports, etc
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Classification Techniques
Decision Tree based Methods
 Rule-based Methods
 Memory based reasoning
 Neural Networks
 Naïve Bayes and Bayesian Belief Networks
 Support Vector Machines

© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Example of a Decision Tree
Tid Refund Marital
Status
Taxable
Income Cheat
1
Yes
Single
125K
No
2
No
Married
100K
No
3
No
Single
70K
No
4
Yes
Married
120K
No
5
No
Divorced 95K
Yes
6
No
Married
No
7
Yes
Divorced 220K
No
8
No
Single
85K
Yes
9
No
Married
75K
No
10
No
Single
90K
Yes
60K
Splitting Attributes
Refund
Yes
No
NO
MarSt
Single, Divorced
TaxInc
< 80K
NO
Married
NO
> 80K
YES
10
Model: Decision Tree
Training Data
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Another Example of Decision Tree
MarSt
Tid Refund Marital
Status
Taxable
Income Cheat
1
Yes
Single
125K
No
2
No
Married
100K
No
3
No
Single
70K
No
4
Yes
Married
120K
No
5
No
Divorced 95K
Yes
6
No
Married
No
7
Yes
Divorced 220K
No
8
No
Single
85K
Yes
9
No
Married
75K
No
10
No
Single
90K
Yes
60K
Married
NO
Single,
Divorced
Refund
No
Yes
NO
TaxInc
< 80K
> 80K
NO
YES
There could be more than one tree that
fits the same data!
10
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Decision Tree Classification Task
Tid
Attrib1
Attrib2
Attrib3
1
Yes
Large
125K
No
2
No
Medium
100K
No
3
No
Small
70K
No
4
Yes
Medium
120K
No
5
No
Large
95K
Yes
6
No
Medium
60K
No
7
Yes
Large
220K
No
8
No
Small
85K
Yes
9
No
Medium
75K
No
10
No
Small
90K
Yes
Tree
Induction
algorithm
Class
Induction
Learn
Model
Model
10
Training Set
Tid
Attrib1
Attrib2
Attrib3
11
No
Small
55K
?
12
Yes
Medium
80K
?
13
Yes
Large
110K
?
14
No
Small
95K
?
15
No
Large
67K
?
Apply
Model
Class
Decision
Tree
Deduction
10
Test Set
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Apply Model to Test Data
Test Data
Start from the root of tree.
Refund
Yes
Refund Marital
Status
Taxable
Income Cheat
No
80K
Married
?
10
No
NO
MarSt
Single, Divorced
TaxInc
< 80K
NO
© Tan,Steinbach, Kumar
Married
NO
> 80K
YES
Introduction to Data Mining
4/18/2004
‹#›
Apply Model to Test Data
Test Data
Refund
Yes
Refund Marital
Status
Taxable
Income Cheat
No
80K
Married
?
10
No
NO
MarSt
Single, Divorced
TaxInc
< 80K
NO
© Tan,Steinbach, Kumar
Married
NO
> 80K
YES
Introduction to Data Mining
4/18/2004
‹#›
Apply Model to Test Data
Test Data
Refund
Yes
Refund Marital
Status
Taxable
Income Cheat
No
80K
Married
?
10
No
NO
MarSt
Single, Divorced
TaxInc
< 80K
NO
© Tan,Steinbach, Kumar
Married
NO
> 80K
YES
Introduction to Data Mining
4/18/2004
‹#›
Apply Model to Test Data
Test Data
Refund
Yes
Refund Marital
Status
Taxable
Income Cheat
No
80K
Married
?
10
No
NO
MarSt
Single, Divorced
TaxInc
< 80K
NO
© Tan,Steinbach, Kumar
Married
NO
> 80K
YES
Introduction to Data Mining
4/18/2004
‹#›
Apply Model to Test Data
Test Data
Refund
Yes
Refund Marital
Status
Taxable
Income Cheat
No
80K
Married
?
10
No
NO
MarSt
Single, Divorced
TaxInc
< 80K
NO
© Tan,Steinbach, Kumar
Married
NO
> 80K
YES
Introduction to Data Mining
4/18/2004
‹#›
Apply Model to Test Data
Test Data
Refund
Yes
Refund Marital
Status
Taxable
Income Cheat
No
80K
Married
?
10
No
NO
MarSt
Single, Divorced
TaxInc
< 80K
NO
© Tan,Steinbach, Kumar
Married
Assign Cheat to “No”
NO
> 80K
YES
Introduction to Data Mining
4/18/2004
‹#›
Decision Tree Classification Task
Tid
Attrib1
Attrib2
Attrib3
1
Yes
Large
125K
No
2
No
Medium
100K
No
3
No
Small
70K
No
4
Yes
Medium
120K
No
5
No
Large
95K
Yes
6
No
Medium
60K
No
7
Yes
Large
220K
No
8
No
Small
85K
Yes
9
No
Medium
75K
No
10
No
Small
90K
Yes
Tree
Induction
algorithm
Class
Induction
Learn
Model
Model
10
Training Set
Tid
Attrib1
Attrib2
Attrib3
11
No
Small
55K
?
12
Yes
Medium
80K
?
13
Yes
Large
110K
?
14
No
Small
95K
?
15
No
Large
67K
?
Apply
Model
Class
Decision
Tree
Deduction
10
Test Set
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Decision Tree Induction

Many Algorithms:
– Hunt’s Algorithm (one of the earliest)
– CART
– ID3, C4.5
– SLIQ, SPRINT
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
General Structure of Hunt’s Algorithm


Let Dt be the set of training records
that reach a node t
General Procedure:
– If Dt contains records that
belong the same class yt, then t
is a leaf node labeled as yt
– If Dt is an empty set, then t is a
leaf node labeled by the default
class, yd
– If Dt contains records that
belong to more than one class,
use an attribute test to split the
data into smaller subsets.
Recursively apply the
procedure to each subset.
© Tan,Steinbach, Kumar
Introduction to Data Mining
Tid Refund Marital
Status
Taxable
Income Cheat
1
Yes
Single
125K
No
2
No
Married
100K
No
3
No
Single
70K
No
4
Yes
Married
120K
No
5
No
Divorced 95K
Yes
6
No
Married
No
7
Yes
Divorced 220K
No
8
No
Single
85K
Yes
9
No
Married
75K
No
10
No
Single
90K
Yes
60K
10
Dt
?
4/18/2004
‹#›
Hunt’s Algorithm
Don’t
Cheat
Refund
Yes
No
Don’t
Cheat
Don’t
Cheat
Refund
Refund
Yes
Yes
No
No
Tid Refund Marital
Status
Taxable
Income Cheat
1
Yes
Single
125K
No
2
No
Married
100K
No
3
No
Single
70K
No
4
Yes
Married
120K
No
5
No
Divorced 95K
Yes
6
No
Married
No
7
Yes
Divorced 220K
No
8
No
Single
85K
Yes
9
No
Married
75K
No
10
No
Single
90K
Yes
60K
10
Don’t
Cheat
Don’t
Cheat
Marital
Status
Single,
Divorced
Cheat
Married
Single,
Divorced
Don’t
Cheat
© Tan,Steinbach, Kumar
Marital
Status
Married
Don’t
Cheat
Taxable
Income
< 80K
>= 80K
Don’t
Cheat
Cheat
Introduction to Data Mining
4/18/2004
‹#›
Tree Induction

Greedy strategy.
– Split the records based on an attribute test
that optimizes certain criterion.

Issues
– Determine how to split the records
How
to specify the attribute test condition?
How to determine the best split?
– Determine when to stop splitting
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Tree Induction

Greedy strategy.
– Split the records based on an attribute test
that optimizes certain criterion.

Issues
– Determine how to split the records
How
to specify the attribute test condition?
How to determine the best split?
– Determine when to stop splitting
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
How to Specify Test Condition?

Depends on attribute types
– Nominal
– Ordinal
– Continuous

Depends on number of ways to split
– 2-way split
– Multi-way split
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct
values.
CarType
Family
Luxury
Sports

Binary split: Divides values into two subsets.
Need to find optimal partitioning.
{Sports,
Luxury}
CarType
© Tan,Steinbach, Kumar
{Family}
OR
Introduction to Data Mining
{Family,
Luxury}
CarType
{Sports}
4/18/2004
‹#›
Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct
values.
Size
Small
Large
Medium

Binary split: Divides values into two subsets.
Need to find optimal partitioning.
{Small,
Medium}

Size
{Large}
What about this split?
© Tan,Steinbach, Kumar
OR
{Small,
Large}
Introduction to Data Mining
{Medium,
Large}
Size
{Small}
Size
{Medium}
4/18/2004
‹#›
Splitting Based on Continuous Attributes

Different ways of handling
– Discretization to form an ordinal categorical
attribute
Static – discretize once at the beginning
 Dynamic – ranges can be found by equal interval
bucketing, equal frequency bucketing
(percentiles), or clustering.

– Binary Decision: (A < v) or (A  v)
consider all possible splits and finds the best cut
 can be more compute intensive

© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Splitting Based on Continuous Attributes
Taxable
Income
> 80K?
Taxable
Income?
< 10K
Yes
> 80K
No
[10K,25K)
(i) Binary split
© Tan,Steinbach, Kumar
[25K,50K)
[50K,80K)
(ii) Multi-way split
Introduction to Data Mining
4/18/2004
‹#›
Tree Induction

Greedy strategy.
– Split the records based on an attribute test
that optimizes certain criterion.

Issues
– Determine how to split the records
How
to specify the attribute test condition?
How to determine the best split?
– Determine when to stop splitting
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
How to determine the Best Split
Before Splitting: 10 records of class 0,
10 records of class 1
Own
Car?
Yes
Car
Type?
No
Family
Student
ID?
Luxury
c1
Sports
C0: 6
C1: 4
C0: 4
C1: 6
C0: 1
C1: 3
C0: 8
C1: 0
C0: 1
C1: 7
C0: 1
C1: 0
...
c10
c11
C0: 1
C1: 0
C0: 0
C1: 1
c20
...
C0: 0
C1: 1
Which test condition is the best?
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
How to determine the Best Split
Greedy approach:
– Nodes with homogeneous class distribution
are preferred
 Need a measure of node impurity:

C0: 5
C1: 5
C0: 9
C1: 1
Non-homogeneous,
Homogeneous,
High degree of impurity
Low degree of impurity
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Measures of Node Impurity

Gini Index

Entropy

Misclassification error
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
How to Find the Best Split
Before Splitting:
C0
C1
N00
N01
M0
A?
B?
Yes
No
Node N1
C0
C1
Node N2
N10
N11
C0
C1
N20
N21
M2
M1
Yes
No
Node N3
C0
C1
Node N4
N30
N31
C0
C1
M3
M12
N40
N41
M4
M34
Gain = M0 – M12 vs M0 – M34
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Measure of Impurity: GINI

Gini Index for a given node t :
GINI (t )  1   [ p( j | t )]2
j
(NOTE: p( j | t) is the relative frequency of class j at node t).
– Maximum (1 - 1/nc) when records are equally
distributed among all classes, implying least
interesting information
– Minimum (0.0) when all records belong to one class,
implying most interesting information
C1
C2
0
6
Gini=0.000
© Tan,Steinbach, Kumar
C1
C2
1
5
Gini=0.278
C1
C2
2
4
Gini=0.444
Introduction to Data Mining
C1
C2
3
3
Gini=0.500
4/18/2004
‹#›
Examples for computing GINI
GINI (t )  1   [ p( j | t )]2
j
C1
C2
0
6
P(C1) = 0/6 = 0
C1
C2
1
5
P(C1) = 1/6
C1
C2
2
4
P(C1) = 2/6
© Tan,Steinbach, Kumar
P(C2) = 6/6 = 1
Gini = 1 – P(C1)2 – P(C2)2 = 1 – 0 – 1 = 0
P(C2) = 5/6
Gini = 1 – (1/6)2 – (5/6)2 = 0.278
P(C2) = 4/6
Gini = 1 – (2/6)2 – (4/6)2 = 0.444
Introduction to Data Mining
4/18/2004
‹#›
Splitting Based on GINI


Used in CART, SLIQ, SPRINT.
When a node p is split into k partitions (children), the
quality of split is computed as,
k
ni
GINI split   GINI (i )
i 1 n
where,
© Tan,Steinbach, Kumar
ni = number of records at child i,
n = number of records at node p.
Introduction to Data Mining
4/18/2004
‹#›
Binary Attributes: Computing GINI
Index


Splits into two partitions
Effect of Weighing partitions:
– Larger and Purer Partitions are sought for.
Parent
B?
Yes
No
C1
6
C2
6
Gini = 0.500
Gini(N1)
= 1 – (5/7)2 – (2/7)2
= 0.4082
Gini(N2)
= 1 – (1/5)2 – (4/5)2
= 0.32
© Tan,Steinbach, Kumar
Node N1
Node N2
N1 N2
C1
5
1
C2
2
4
Gini=0.3715
Introduction to Data Mining
Gini(Children)
= 7/12 * 0.4082 +
5/12 * 0.32
= 0.3715
4/18/2004
‹#›
Categorical Attributes: Computing Gini Index


For each distinct value, gather counts for each class in
the dataset
Use the count matrix to make decisions
Multi-way split
Two-way split
(find best partition of values)
CarType
Family Sports Luxury
C1
C2
Gini
1
4
2
1
0.393
© Tan,Steinbach, Kumar
1
1
C1
C2
Gini
CarType
{Sports,
{Family}
Luxury}
3
1
2
4
0.400
Introduction to Data Mining
C1
C2
Gini
CarType
{Family,
{Sports}
Luxury}
2
2
1
5
0.419
4/18/2004
‹#›
Continuous Attributes: Computing Gini Index




Use Binary Decisions based on one
value
Several Choices for the splitting value
– Number of possible splitting values
= Number of distinct values
Each splitting value has a count matrix
associated with it
– Class counts in each of the
partitions, A < v and A  v
Simple method to choose best v
– For each v, scan the database to
gather count matrix and compute
its Gini index
– Computationally Inefficient!
Repetition of work.
© Tan,Steinbach, Kumar
Introduction to Data Mining
Tid Refund Marital
Status
Taxable
Income Cheat
1
Yes
Single
125K
No
2
No
Married
100K
No
3
No
Single
70K
No
4
Yes
Married
120K
No
5
No
Divorced 95K
Yes
6
No
Married
No
7
Yes
Divorced 220K
No
8
No
Single
85K
Yes
9
No
Married
75K
No
10
No
Single
90K
Yes
60K
10
Taxable
Income
> 80K?
Yes
4/18/2004
No
‹#›
Continuous Attributes: Computing Gini Index...

For efficient computation: for each attribute,
– Sort the attribute on values
– Linearly scan these values, each time updating the count matrix
and computing gini index
– Choose the split position that has the least gini index
Cheat
No
No
No
Yes
Yes
Yes
No
No
No
No
100
120
125
220
Taxable Income
60
Sorted Values
70
55
Split Positions
75
65
85
72
90
80
95
87
92
97
110
122
172
230
<=
>
<=
>
<=
>
<=
>
<=
>
<=
>
<=
>
<=
>
<=
>
<=
>
<=
>
Yes
0
3
0
3
0
3
0
3
1
2
2
1
3
0
3
0
3
0
3
0
3
0
No
0
7
1
6
2
5
3
4
3
4
3
4
3
4
4
3
5
2
6
1
7
0
Gini
© Tan,Steinbach, Kumar
0.420
0.400
0.375
0.343
0.417
Introduction to Data Mining
0.400
0.300
0.343
0.375
0.400
4/18/2004
0.420
‹#›
Alternative Splitting Criteria based on INFO

Entropy at a given node t:
Entropy(t )   p( j | t ) log p( j | t )
j
(NOTE: p( j | t) is the relative frequency of class j at node t).
– Measures homogeneity of a node.
 Maximum
(log nc) when records are equally distributed
among all classes implying least information
 Minimum (0.0) when all records belong to one class,
implying most information
– Entropy based computations are similar to the
GINI index computations
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Examples for computing Entropy
Entropy(t )   p( j | t ) log p( j | t )
j
C1
C2
0
6
C1
C2
1
5
P(C1) = 1/6
C1
C2
2
4
P(C1) = 2/6
© Tan,Steinbach, Kumar
P(C1) = 0/6 = 0
2
P(C2) = 6/6 = 1
Entropy = – 0 log 0 – 1 log 1 = – 0 – 0 = 0
P(C2) = 5/6
Entropy = – (1/6) log2 (1/6) – (5/6) log2 (5/6) = 0.65
P(C2) = 4/6
Entropy = – (2/6) log2 (2/6) – (4/6) log2 (4/6) = 0.92
Introduction to Data Mining
4/18/2004
‹#›
Splitting Based on INFO...

Information Gain:
n


GAIN  Entropy ( p)    Entropy (i) 
 n

k
split
i
i 1
Parent Node, p is split into k partitions;
ni is number of records in partition i
– Measures Reduction in Entropy achieved because of
the split. Choose the split that achieves most reduction
(maximizes GAIN)
– Used in ID3 and C4.5
– Disadvantage: Tends to prefer splits that result in large
number of partitions, each being small but pure.
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Splitting Based on INFO...

Gain Ratio:
GAIN
n
n
GainRATIO 
SplitINFO    log
SplitINFO
n
n
Split
split
k
i
i
i 1
Parent Node, p is split into k partitions
ni is the number of records in partition i
– Adjusts Information Gain by the entropy of the
partitioning (SplitINFO). Higher entropy partitioning
(large number of small partitions) is penalized!
– Used in C4.5
– Designed to overcome the disadvantage of Information
Gain
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Splitting Criteria based on Classification Error

Classification error at a node t :
Error (t )  1  max P(i | t )
i

Measures misclassification error made by a node.
 Maximum
(1 - 1/nc) when records are equally distributed
among all classes, implying least interesting information
 Minimum
(0.0) when all records belong to one class, implying
most interesting information
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Examples for Computing Error
Error (t )  1  max P(i | t )
i
C1
C2
0
6
C1
C2
1
5
P(C1) = 1/6
C1
C2
2
4
P(C1) = 2/6
© Tan,Steinbach, Kumar
P(C1) = 0/6 = 0
P(C2) = 6/6 = 1
Error = 1 – max (0, 1) = 1 – 1 = 0
P(C2) = 5/6
Error = 1 – max (1/6, 5/6) = 1 – 5/6 = 1/6
P(C2) = 4/6
Error = 1 – max (2/6, 4/6) = 1 – 4/6 = 1/3
Introduction to Data Mining
4/18/2004
‹#›
Comparison among Splitting Criteria
For a 2-class problem:
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Misclassification Error vs Gini
Parent
A?
Yes
No
Node N1
Error(N1)
= 1 – max[(3/3),(0/3)]
=1-1=0
Error(N2)
= 1 – max[(4/7), (3/7)]
= 1 – 4/7 = 3/7
© Tan,Steinbach, Kumar
Node N2
C1
C2
N1
3
0
N2
4
3
Error=0.3
Introduction to Data Mining
C1
7
C2
3
Error = 0.3
Error(Children)
= 3/10 * 0
+ 7/10 * [3/7]
= 0.3
4/18/2004
‹#›
Misclassification Error vs Gini
Parent
A?
Yes
No
Node N1
Gini(N1)
= 1 – (3/3)2 – (0/3)2
=0
Gini(N2)
= 1 – (4/7)2 – (3/7)2
= 0.489
© Tan,Steinbach, Kumar
Node N2
C1
C2
N1
3
0
N2
4
3
Gini=0.342
C1
7
C2
3
Gini = 0.42
Gini(Children)
= 3/10 * 0
+ 7/10 * 0.489
= 0.342
Gini improves
Introduction to Data Mining
4/18/2004
‹#›
Tree Induction

Greedy strategy.
– Split the records based on an attribute test
that optimizes certain criterion.

Issues
– Determine how to split the records
How
to specify the attribute test condition?
How to determine the best split?
– Determine when to stop splitting
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Stopping Criteria for Tree Induction

Stop expanding a node when all the records
belong to the same class

Stop expanding a node when all the records have
similar attribute values

Early termination (to be discussed later)
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Decision Tree Based Classification

Advantages:
– Inexpensive to construct
– Extremely fast at classifying unknown records
– Easy to interpret for small-sized trees
– Accuracy is comparable to other classification
techniques for many simple data sets
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
An example: Buys_Computer
age
<=30
<=30
31…40
>40
>40
>40
31…40
<=30
<=30
>40
<=30
31…40
31…40
>40
© Tan,Steinbach, Kumar
income student credit_rating
high
no fair
high
no excellent
high
no fair
medium
no fair
low
yes fair
low
yes excellent
low
yes excellent
medium
no fair
low
yes fair
medium
yes fair
medium
yes excellent
medium
no excellent
high
yes fair
medium
no excellent
Introduction to Data Mining
buys_computer
no
no
yes
yes
yes
no
yes
no
yes
yes
yes
yes
yes
no
4/18/2004
‹#›
Output: A Decision Tree for “buys_computer”
age?
31 ... 40
overcast
<=30
student?
no
no
© Tan,Steinbach, Kumar
yes
yes
yes
Introduction to Data Mining
>40
credit rating?
excellent
fair
yes
4/18/2004
‹#›
Attribute Selection Measure: Information Gain (ID3/C4.5)



Select the attribute with the highest information gain
Let pi be the probability that an arbitrary tuple in D
belongs to class Ci, estimated by |Ci, D|/|D|
Expected information (entropy) needed to classify a tuple
m
in D:
Info( D)   pi log 2 ( pi )
i 1


Information needed (after using A to split D into v
v |D |
partitions) to classify D:
j
InfoA ( D)  
 I (D j )
j 1 | D |
Information gained by branching on attribute A
Gain(A)  Info(D)  InfoA(D)
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Attribute Selection: Information Gain

Class P: buys_computer = “yes”

Class N: buys_computer = “no”
Info( D)  I (9,5)  
age
<=30
31…40
>40
Infoage ( D ) 
9
9
5
5
log 2 ( )  log 2 ( ) 0.940
14
14 14
14
pi
2
4
3
age
income student
<=30
high
no
<=30
high
no
31…40 high
no
>40
medium
no
>40
low
yes
>40
low
yes
31…40 low
yes
<=30
medium
no
<=30
low
yes
>40
medium
yes
<=30
medium
yes
31…40 medium
no
© Tan,Steinbach,
Kumar
31…40
high
yes
>40
medium
no
ni I(pi, ni)
3 0.971
0 0
2 0.971

5
I (2,3)
14
5
4
I ( 2,3) 
I (4,0)
14
14
5
I (3,2)  0.694
14
means “age <=30” has 5 out of 14
samples, with 2 yes’es and 3 no’s.
Hence
Gain(age)  Info( D)  Infoage ( D)  0.246
credit_rating buys_computer
fair
no
excellent
no
fair
yes
fair
yes
fair
yes
excellent
no
excellent
yes
fair
no
fair
yes
fair
yes
excellent
yes
excellent
yes
Introduction
to Data Mining
fair
yes
excellent
no
Similarly,
Gain(income)  0.029
Gain( student )  0.151
Gain(credit _ rating )  0.048
4/18/2004
‹#›
Computing Information-Gain for Continuous-Value Attributes

Let attribute A be a continuous-valued attribute

Must determine the best split point for A
– Sort the value A in increasing order
– Typically, the midpoint between each pair of adjacent values is
considered as a possible split point
(ai+ai+1)/2
is the midpoint between the values of ai and ai+1
– The point with the minimum expected information requirement for A
is selected as the split-point for A

Split:
– D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is the
set of tuples in D satisfying A > split-point
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Gain Ratio for Attribute Selection (C4.5)

Information gain measure is biased towards attributes with a
large number of values

C4.5 (a successor of ID3) uses gain ratio to overcome the
problem (normalization to information gain)
v
SplitInfo A ( D)  
j 1
| Dj |
|D|
 log 2 (
| Dj |
|D|
)
– GainRatio(A) = Gain(A)/SplitInfo(A)

Ex.
SplitInfo A ( D)  
4
4
6
6
4
4
 log 2 ( )   log 2 ( )   log 2 ( )  0.926
14
14 14
14 14
14
– gain_ratio(income) = 0.029/0.926 = 0.031

The attribute with the maximum gain ratio is selected as the
splitting attribute
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Gini index (CART, IBM IntelligentMiner)

If a data set D contains examples from n classes, gini index, gini(D) is defined as
n 2
gini( D)  1  p j
j 1
where pj is the relative frequency of class j in D

If a data set D is split on A into two subsets D1 and D2, the gini index gini(D) is
defined as
|D1|
|D2 |
gini(D1) 
gini(D2)
gini A (D) 
|D|

|D|
Reduction in Impurity:
gini( A)  gini(D)  giniA(D)

The attribute provides the smallest ginisplit(D) (or the largest reduction in impurity)
is chosen to split the node (need to enumerate all the possible splitting points for
each attribute)
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›
Decision Tree Induction by C4.5
Simple depth-first construction.
 Uses Information Gain
 Sorts Continuous Attributes at each node.
 Needs entire data to fit in memory.
 Unsuitable for Large Datasets.
– Needs out-of-core sorting.


You can download the software from:
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz
© Tan,Steinbach, Kumar
Introduction to Data Mining
4/18/2004
‹#›