Transcript Slide 1
РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ (РУДН)
Факультет физико-математических и естественных наук
Кафедра нелинейного анализа и оптимизации группа НМ-601
Пример модели ВВП с учетом старения
производственных фондов, её исследование и применение
к экономике США
Выполнил: Сергоян Айк Самвелович
Научный руководитель: доцент, к.ф-м.н. Оленев Николай Николаевич
Purposes of the research
• A GDP model description
• Research of the model
• Calculation of parameters
• Description of US economy by the model
Introduction
Cobb-Douglas’s model – Q=𝐴 × 𝐿𝛼 × 𝐾𝛽
Q - output, L - labor costs, K - capital expenditures, and 𝐴 – technological
coefficient
There are no any theoretical base to take as a constant 𝛼 in different sectors
of economy. In order to understand that fact let us consider that we have an
economy, where 𝛼 + 𝛽 = 1. Now let us consider two sectors of that economy
with the same technological coefficient 𝐴 :
𝑄1 = 𝐴 × 𝐿𝛼1 × 𝐾11−𝛼
𝑄2 = 𝐴 × 𝐿𝛼2 × 𝐾21−𝛼
𝑄1 +𝑄2 ≠ 𝐴 × (𝐿1 + 𝐿2 )𝛼 × (𝐾1 + 𝐾2 )1−𝛼 .
𝐿
Equality is possible only if - 1 = 𝐾1 /𝐾2 .
𝐿2
Description of a GDP model
Hypothesis: The number of homogeneous jobs in a given production
unit are fixed over time, and product output decreases with a
constant rate µ, µ>0 .
Considered formula of GDP:
𝐺(𝑡) = 𝑀(𝑡) × 𝑓(𝑡).
𝐺(𝑡) - the value of GDP in year t
𝑓(𝑡) called the loading capacity
𝑀 𝑡 - maximal total output
𝐺 𝑡 <𝑀 𝑡 ⟹𝑓 𝑡 <1
Description of a GDP model (2)
𝑛
𝑀 𝑡 =
𝑖=0
𝛷(𝑡 − 𝑖)𝑒 −𝑖𝜇
𝑝(𝑡 − 𝑖) × 𝑏
𝒏 – number of years, after which production unit becomes unusable due
to aging
b – coefficient of the capital intensity
𝛷 𝑡 – investment in the economy in year 𝒕
𝑝(𝑡) – price index in year t
𝑝 𝑡 =
𝐺(𝑡)𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑟𝑖𝑐𝑒
𝐺(𝑡)𝑝𝑟𝑖𝑐𝑒 𝑖𝑛 2005
Conclusions
a. A model of GDP was described
b. Model was researched
c. The coefficient of capital intensity – 𝑏, 𝛼, product output
decreasing rate – 𝜇, were obtained
d. Model was used and parameters were obtained for US
economy.
Description of a GDP model (3)
Share of new capacities are constant in the total output.
= 𝛼 = 𝑐𝑜𝑛𝑠𝑡 > 0, for each year t
⟹
𝛷 𝑡
𝑝 𝑡 ×𝑏×𝑀 𝑡
𝜇
1−𝛼 𝐿 𝑡
𝑓 𝑡 =1− 1−
×
𝜈 𝑡
𝑀 𝑡
𝝂 𝒕 – labor input in year 𝒕.
𝑳 𝒕 – Number of jobs in year t.
1
𝜇
1−
𝛼
Research of the model
As the function 𝑓 𝑡 < 1, the value of 1 −
𝑓(𝑡) > 1. Note also that 1 −
that, 0 <
𝜇
𝛼
< 1 ⟹ 𝜇 < 𝛼.
𝜇
𝛼
𝜇
𝛼
> 0, because otherwise –
𝜇
𝛼
< 1. So – 0 < 1 − < 1. It is easy to see,
49
𝐿 𝑡 =
𝑖=0
𝛷(𝑡 − 𝑖)
𝜐𝑖 (𝑡) ×
𝑝(𝑡 − 𝑖) × 𝑏
Calculation of parameters
The labor input appropriating to each production unit is constant by t.
⟹
𝜈=
𝐿(𝑡)
𝛷(𝑡 − 𝑖)
49
𝑖=0 𝑝(𝑡 − 𝑖) × 𝑏
𝛷 𝑡
=
𝛷
𝑡
−
𝑖
−𝑖μ
𝑝 𝑡 × 49
𝑝 𝑡+𝑗 ×
𝑖=0( 𝑝 𝑡 − 𝑖 ) × 𝑒
𝛷 𝑡+𝑗
=𝛼
𝛷
𝑡
+
𝑗
−
𝑖
49
−𝑖μ
𝑖=0( 𝑝 𝑡 + 𝑗 − 𝑖 ) × 𝑒
Solving the last equation we will obtain 𝛍. Than we can obtain 𝛼
Calculation of parameters(2)
𝑏=
μ
1− 1− 1−α ×
49 𝛷
𝑖=0 𝑝
𝑡−𝑖
𝑡−𝑖
×𝑝 𝑡 ×𝛼
𝛷 𝑡
𝐺 𝑡 ×𝑝 𝑡 ×𝛼
Finally we obtain 𝒃
μ
1/1−α
×𝛷 𝑡
Description of US economy by the model
Year
2000 2001 2002
2003
2004
2005
2006
2007
2008
2009
2010
GDP (US)
(∗ 1011 )
97,648
100,76
104,176
109,08
116,308
123,641
133,362
139,95
142,969
140,439
145,82
4
9,666
10,034
10,165
11,023
12,078
13,013
14,104
15,334
16,731
18,29
19,822
Investment
(∗ 1011 )
US economy
μ = 0.00577
𝛼= 0.02383
b= 4.12341
Thank you for attention! ;)