What We Hope To Accomplish

Download Report

Transcript What We Hope To Accomplish

Winter 2012
Macroeconomics
Starring Erik Hurst
1
Total U.S. Non Farm Employment Since 1990
Note: Up through November 2011
2
Unemployment Rate: 1970M1 – 2011M11
3
Unemployment Rate: 1970M1 – 2011M11
Civilian Unemployment Rate ~8.6%
4
Unemployment Rate: 1970M1 – 2011M11
Unemployment Falls As Recession Ends
5
Unemployment Rate: 1970M1 – 2011M11
Unemployment Does Not Fall As Recession Ends
6
Unemployment Rate: Historical
7
Broad Questions of Interest About Unemployment
• What is a recession?
• Why would unemployment increase at the end of a recession?
• Why has the nature of unemployment coming out of recessions
changed over time?
• Why does unemployment exist?
• Can policymakers affect the unemployment rate?
8
How is Unemployment Measured?
• Standardized Definition of the Unemployment Rate:
Unemployed
= jobless but looking for a job
Labor Force
= #Employed + #Unemployed
Unemployment Rate
= (# Unemployed) / (Labor Force)
This is the definition used in most countries, including the U.S.
U.S. data: http://stats.bls.gov/eag.table.html
U.S. measurement details: http://stats.bls.gov/cps_htgm.htm
Issues: Discouraged Workers, Underemployed, Measurement Issues
• Reading: #22 from the reading list
9
Components of Unemployment
• Flow of people into the unemployment pool
o Flow into unemployment from employment (job loss)
o Flow into unemployment from out of labor force (stop being
discouraged)
• Flow of people out of the unemployment pool
o Flow out of unemployment into employment (job finding)
o Flow out of unemployment out of labor force (discouraged workers)
10
Unemployment Duration
11
Unemployment Duration
Role of Unemployment Benefit Extensions?
12
Labor Force Participation Rate: Men
13
Labor force participation rate = Labor Force/Population
Labor Force Participation Rate: Women
14
Labor force participation rate = Labor Force/Population
Labor Force Participation Rate: Women
15
Labor force participation rate = Labor Force/Population
Types of Unemployment
• Frictional Unemployment: Result of Matching Behavior between Firms and
Workers.
• Structural Unemployment: Result of Mismatch of Skills and Employer Needs
• Cyclical Unemployment: Result of output being below full-employment.
Individuals have the desire to work and the skills to work, yet cannot find a job.
• Is Zero Unemployment a Reasonable Policy Goal?
– No! Frictional and Structural Unemployment may be desirable (unavoidable).
Readings: Supplemental Notes 4 (pages 16-17); Reading List #25-28, 64
16
Why is the Distinction Important?
• How much of the current unemployment is structural vs. cyclical?
• This is a current debate among policy makers (and a question I am trying to
answer in my own research)
• Why could there be structural unemployment?
o Some industries boomed inefficiently during the early 2000s
(construction) and need to retrench. The jobs being created now are
not in those industries (where unemployment is high).
o Some states boomed inefficiently during the early 2000s (Nevada,
Florida, California, Arizona, etc.) and need to retrench. The jobs
being created now are not in those states (where unemployment is
17
high)
Some Other Labor Market Facts
18
Spatial Variation in Unemployment Rate (November 2011)
19
Unemployment Rate by Gender
Seasonally Adjusted
Unemployment Rate
12
Unemployment
Rate
12
10
10
2.7
1.1
8
8
Men
6
6
Women
4
4
2
1990
2
1993
1996
Source: Bureau of Labor Statistics
1999
2002
2005
2008
2011
Unemployment to Non-Participation by Gender
Seasonally Adjusted
Percent Women
Percent Men
0.3
0.4
0.25
Women
0.3
0.2
Men
0.2
0.15
0.1
1990
1994
1998
Source: Bureau of Labor Statistics
0.1
2002
2006
2010
The Unemployment Rate By Skills: All (20-45)
2007
Unemp
Rate
2011
Unemp
Rate
Change
in
Rate
Share
of
Pop.
Share
Weighted
Change
Percent of
Total
Unemp
Rate
Explained
High School
or Less
7.1%
15.2%
8.2%
41%
3.3%
~65%
Some College
4.2%
8.9%
4.7%
30%
1.5%
~25%
College or
More
1.9%
4.5%
2.6%
29%
0.7%
~10%
All
4.6%
9.9%
Education
5.3%
The Unemployment Rate By Skills: All (20-45)
2007
Unemp
Rate
2011
Unemp
Rate
Change
in
Rate
Share
of
Pop.
Share
Weighted
Change
Percent of
Total
Unemp
Rate
Explained
High School
or Less
7.1%
15.2%
8.2%
41%
3.3%
~65%
Some College
4.2%
8.9%
4.7%
30%
1.5%
~25%
College or
More
1.9%
4.5%
2.6%
29%
0.7%
~10%
All
4.6%
9.9%
Education
5.3%
The Unemployment Rate By Skills: All (20-45)
2007
Unemp
Rate
2011
Unemp
Rate
Change
in
Rate
Share
of
Pop.
Share
Weighted
Change
Percent of
Total
Unemp
Rate
Explained
High School
or Less
7.1%
15.2%
8.2%
41%
3.3%
~65%
Some College
4.2%
8.9%
4.7%
30%
1.5%
~25%
College or
More
1.9%
4.5%
2.6%
29%
0.7%
~10%
All
4.6%
9.9%
Education
5.3%
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
Share of Prime Age Lower Educated Men
Working in Manufacturing
25
20
15
10
5
0
Rise of China: Autor et al. (2011)
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
Share of Prime Age Lower Educated Men
Out of the Labor Force
16
14
12
10
8
6
4
2
0
Interaction Between the Construction and
Manufacturing: Low Educated Men
25
20
15
10
5
0
Construction Share
Manufacturing Share
Labor Market Break Down of
Younger, Low Educated (<= 12)Men
Labor Market Status
1997
2007
2010
Out of Labor Force
10.7
12.5
13.9
Unemployed
7.3
6.6
16.0
Construction
13.6
18.8
13.1
Manufacturing
15.5
11.0
8.8
Other
52.1
51.1
48.2
Incarceration Rate about 5% in 2010.
Labor Market Break Down of
Younger, High Educated (>= 16) Men
Labor Market Status
1997
2007
2010
Out of Labor Force
4.2
5.0
5.6
Unemployed
1.9
1.6
4.7
Construction
1.9
2.4
1.5
Manufacturing
2.1
1.9
1.7
Other
89.9
89.1
86.8
Wages of Lower Educated Men
17
16
15
14
13
12
11
10
Men Share Low Ed (Age < 30)
60.0%
58.0%
56.0%
54.0%
52.0%
50.0%
48.0%
46.0%
44.0%
42.0%
40.0%
Share Low Ed
A Potential Hypothesis About Current
Unemployment
•
The decline of manufacturing would have gradually caused an exodus of
low skilled men from the labor market.
•
During previous two decades, such forces were associated with an exodus
of low skilled men out of the labor force (as wages fell).
•
During the past decade, the housing (construction) boom may have delayed
the inevitable (giving low skill men another employment option).
•
As construction returns to “normal” and manufacturing has
disappeared, what will low skill men do?
•
May transition through unemployment before exiting the labor force.
•
This is the focus of my new research project: “Construction Booms,
Construction Busts and the Labor Supply of Low Skilled Men”
Trillion Dollar Question
•
How do we get low skilled men back to work?
•
How many of these unemployed men will transition out of the labor force
given the decade long decline in manufacturing now that construction has
returned to “normal”?
•
Will any of the policies currently discussed in Washington to promote jobs
solve this problem?
•
Are any policies worth exploring?
A Side Question: Why Should We Care About Unemployment?
• Depreciation of Human Capital
o
Individuals lose skills when they sit idle.
• Productive Externalities
o
Working individuals mean fewer wasted resources.
• Social Externalities
o
Individuals not working could increase crime, divorce, etc.
• Individual Self-Worth
o
Individuals not working may have lower marginal utility of
leisure or consumption.
35
Questions We Will Address In This Course
1.
2.
3.
What causes recessions? What causes unemployment?
What caused this recession? Will there be a double dip?
What is the link between housing prices and “real” economic activity
(consumption, production, unemployment, etc.)?
4. What is the link between the banking sector and “real” economic activity?
5. Should we be concerned with inflation? What about deflation?
6. What causes inflation/deflation?
7. How can policy makers (Fed/Congress/President) influence economic activity
in the short run (fight inflation and recessions) and in the long run (promote
economic growth)?
8. What are the pitfalls of government intervention?
9. What makes economies grow in the LONG RUN?!
10. How worried should we be about long run government deficits?
11. What are the costs/benefits of altering the nature of the Federal Reserve?
36
12. What is the influence of China and India on the U.S. economy?
Caveat #1
• My course takes the perspective of analyzing any large macroeconomy (with
respect to the models we build).
• The examples will come from the U.S. (because that is what I study)
• However, the insights apply equally well to all large developed economies
including:
– The European Union
– Japan
– Canada, Australia, etc. (for the most part).
• The models you will learn in this class also explain consumer, business, and
government behavior for all economies (China, India, etc.).
37
Caveat #2
• The course takes time to build.
• Our goal is to construct and analyze the economy as a whole.
• To do that, we separately build the parts.
• After we build the parts, we put them together to see how they interact.
• At certain points in the class, you may feel that we are losing sight of the big
picture and you may feel lost. That is common.
• But, I promise, by week 7 or 8 everything will come together (it always does).
38
Note
• I have so much material to cover in this course, that we will have a
mandatory extra lecture.
• The course will be comprised of 11 lectures.
• The extra lecture is January 1/21 at the Gleacher Center (from 9 am – 12
pm)
• See syllabus for full details.
39
TOPIC 1
A Introduction to Macro Data
40
Goals of the Lecture
•
•
•
•
•
•
•
What is Gross Domestic Product (GDP)? Why do we care about it?
How do we measure standard of living over time?
What are the definitions of the major economic expenditure components?
What are the trends in these components over time?
What is the difference between ‘Real’ and ‘Nominal’ variables?
How is Inflation measured? Why do we care about Inflation?
What have been the predominant relationships between Inflation and GDP
over the last four decades?
NOTE: This lecture will likely go into next week. This is by design. It does
not mean we will be short-changed on other material later in the class.
41
Gross Domestic Product (GDP)
• GDP is a measure of output!
• Why Do We Care?
– Because output is highly correlated (at certain times) with things we care about
(standard of living, wages, unemployment, inflation, budget and trade deficits, value
of currency, etc…)
• Formal Definition:
– GDP is the Market Value of all Final Goods and Services Newly Produced on
Domestic Soil During a Given Time Period (different than GNP)
42
“Production” Equals “Expenditure”
• GDP is a measure of Market Production!
• GDP = Expenditure = Income = Y (the symbol we will use)
(in macroeconomic equilibrium)
• What is produced in the market has to be show up as being purchased or held by
some economic agent;
• Who are the economic agents we will consider on the expenditure side?
–
–
–
–
Consumers (refer to expenditure of consumers as “consumption”)
Businesses (refer to expenditure of firms as “investment”)
Governments (refer to expenditures of governments as “government spending”)
Foreign Sector (refer to expenditures of foreign sector as “exports”)
43
A Simple Example
• What is “produced” has to be “purchased” by someone (including the
producer).
• Suppose I produce silverware (forks, spoons, etc.). If so, I could:
–
–
–
–
–
sell it to some domestic customer (Consumption)
sell it some business (Investment)
keep it in my stock room as inventory (Investment)
sell it to the city of Chicago to use in their shelters (Government spending)
sell it to some foreign customer (Export)
44
“Production” Equals “Income”
• What is Produced is Also a Measure of Income.
• If you pay a $1 for something, that $1 has to end up in someone’s pocket as:
Wages/Salary (compensation for workers who make production)
Profits (compensation for self employed)
Rents (compensation for land owners)
Interest (compensation for debt owners)
Dividends (compensation for equity owners)
• Notice, wages are only one component of income (Y does not equal wages)!
(Although, under certain production functions, they will be proportional to each
other).
45
Stop and Pause
• By definition…..
Production = Income = Expenditure = Y
• What is produced has to be purchased by someone (accounting for inventory
changes).
• What is purchased has to end up as income in somebody’s pocket!
• In our class, we realize that the terms are interchangeable in equilibrium.
46
Measuring GDP in Practice
• Production Method: Measure the Value Added summed Across Industries
(value added = sale price - cost of raw materials)
• Expenditure Method: Spending by consumers (C) + Spending by businesses
(I) + Spending by government (G) + Net Spending by
foreign sector (NX)
• Income Method:
Labor Income (wages/salary) +
Capital Income (rent, interest, dividends, profits).
• In our class, we will model the production side of economy (supply side) and
the expenditure side of the economy (demand side).
• Prices will always adjust to equate supply and demand such that Y (production)
47
always equals Y (expenditure).
What GDP is NOT!
• GDP is not, or never claims to be, an absolute measure of well-being!
– Size effects : But even GDP per capita is not a perfect measure of welfare
•
“The gross national product does not allow for the health of our children, the quality of
their education, or the joy of their play. It does not include the beauty of our poetry or
the strength of our marriages, the intelligence of our public debate or the integrity of our
public officials. It measures neither our courage, nor our wisdom, nor our devotion to
our country. It measures everything, in short, except that which makes life worthwhile,
and it can tell us everything about America except why we are proud to be Americans.”
– U.S. Senator Robert F. Kennedy, 1968
48
More on What GDP Is Not
• GDP Does Not Measure:
–
–
–
–
–
Non-Market Activity (home production, leisure, black market activity)
Environmental Quality/Natural Resource Depletion
Life Expectancy and Health
Income Distribution
Crime/Safety
• Remember how we measure GDP…(i.e., how does one measure “safety”).
• Ideally, what we would like to measure is quality of one’s life:
– Present discounted value of utility from one’s own consumption and leisure
and that of one’s loved ones.
• Read: Course Pack Readings 19-21 and 23
49
Defining the Expenditure Components (formally)
• Consumption (C):
– The Sum of Durables, Non-Durables and Services Purchased Domestically by NonBusinesses and Non-Governments (ie, individual consumers).
– Includes Haircuts (services), Refrigerators (durables), and Apples (non-durables).
– Does Not Include Purchases of New Housing.
• Investment (I):
– The Sum of Durables, Non-Durables and Services Purchased Domestically by
Businesses
– Includes Business and Residential Structures, Equipment and Inventory Investment
– Land purchases are NOT counted as part of GDP (land is not produced!!)
– Stock purchases are NOT counted as part of GDP (stock transactions do NOT
represent production – they are saving!)
There is a difference between financial and economic investment!!!!!!!
50
More On Expenditure/Production Components
• Government Spending (G): Goods and Services Purchased by the domestic
government.
• For the U.S., 2/3 of this is at the state level (police and fire protection, school
teachers, snow plowing) and 1/3 is at the federal level (President, Post Office,
Missiles).
• NOTE: Welfare and Social Security are NOT Government Spending. These
are Transfer Payments. Nothing is Produced in this Case.
• Net Exports (NX): Exports (X) - Imports (IM);
– Exports:
– Imports:
The Amount of Domestically Produced Goods Sold on Foreign Soil
The Amount of Goods Produced on Foreign Soil Purchased
Domestically.
51
Summary of the Demand Side of Economy
• Expenditures:
Y = C + I + G + X - IM
• Only four economic agents can “spend” on domestic production
Domestic consumers (C)
Domestic firms (I)
Domestic governments (G)
Foreign consumers, firms, and governments (X)
• We will develop models for each sub component of the expenditure side of the
economy (C, I, G, and NX).
52
Measuring Expenditure (Demand Side)
• Only include expenditures for goods that are “produced”.
– If I give $10 to a movie theater to watch a movie, it is counted as expenditure.
– If I give $10 to my nephew for a birthday present, it is not counted as expenditure.
– If I give $10 to the ATM machine to put in my savings account, it is not counted as
expenditure.
• The second example would be considered a “transfer” (once I give $10 to my
nephew, he can go to the movies if he wanted to – once that $10 is spent, it will
show up in GDP).
– “Transfers” are defined as the exchange of economic resources from one economic
agent to another when no goods or services are exchanged.
• The third example is considered “saving” (I am delaying expenditure until the
future). Once I spend the $10 in the future, it will show up in GDP.
53
Some Examples of GDP Calculations
• Thinking about imports
Y = C + I + G + X – IM
• Thinking about inventories (storing production….)
Y = C + I + G + X – IM
• Distinguishing between government spending and “transfers”.
Y = C + I + G + X – IM
54
Summary of Supply Side of Economy
• Production:
Y = f(A, N, K, other inputs like oil)
where A = technology, N = labor input, K = capital (machine) input
• We will develop models/intuition for A, N, K and oil
• N will be determined in the labor market (labor demand and labor supply)
55
Where We are Headed
56
The role of “prices”
• “Prices” ensure that we are always in equilibrium
• 4 prices in our class
Price of output (CPI)
P
Price of labor (real wages)
W/P
Price of money (loans – real interest rates)
r
Price of foreign currency (exchange rate)
$ or e
• We will develop (from fundamentals) 4 markets in our class
57
The 4 Markets
1)
Labor Demand vs. Labor Supply (determines N and W/P)
Necessary to compute the supply side of economy
Key to where recessions come from (frictions in the labor market)
2)
IS-LM market (determines r and Y (via I))
Interest rates determine firm investment
Key to federal reserve policy (sets r)
Key to understanding banking crises.
3)
Aggregate Demand vs. Aggregate Supply (determines P and Y)
Key to understanding where inflation comes from!
58
The 4 Markets (continued)
4)
Foreign Exchange Market (determines value of currency and NX)
We will focus on this market in week 10
Notice, markets 1-3 help to pin down the level of Y in the economy
These four markets (and their components) will determine everything we want to
know about the macroeconomy (production, inflation, economic growth,
unemployment, interest rates, budget deficits, trade deficits, etc.)
For the next 7 weeks, we will build the underpinnings of these markets. In doing
so, we will uncover how these markets work and what factors influence those
markets!
59
An Important Equation
60
Defining Savings (Store this Away!)
Yd = Disposable Income = Y - T + Tr
• T
• Tr
= Taxes
= Transfers (ie, Welfare)
Yd = C + SHH
• SHH
(1)
(2)
= Personal (Household or Private) Saving
SHH = Y - T + Tr – C <<Combine (1) and (2)>>
(3)
• Personal Savings Rate = SHH/Yd
For simplicity, we are going to abstract from business saving (things like retained earnings and
depreciation). For those interested in more of these accounting relationships, see the text.
61
A Look at Actual U.S. Household Saving Rates:
1970M1 – 2011M10
Note:
Shaded areas are recessions.
62
Saving Identities (continued)
Sgovt = T - (G + Tr)
(4)
• Sgovt = Government (Public) Saving
• Includes Federal, State and Local Saving
• What government collects (T) less what they pay out (G and Tr)
S
= SHH + Sgovt = Y - C - G = I + NX
• S
(5)
= National Savings
so,
S
S
= Y-C–G
= I + NX
<<Combine (3) and (5)>>
<<Combine (6) and Y = C+I+G+NX>>
(6)
(7)
63
Summary
S = I + NX
We will use this equation for the rest of the class!
National savings, goes into a “bank”.
Firms looking to borrow, go to the “bank”.
Firms can only borrow what is in the “bank”
In a world where NX = 0, interest rates will adjust such that savings will always
equal investment (I=S – this will be our IS curve later in the course).
What is the role of NX? (International savings)
64
Understanding Prices and Inflation
65
Prices and Inflation
• Why is it important to measure “prices” of goods and services?
o Prices are a key metric of measurement (we measure GDP in prices).
- The metric changes over time!
o Changes in prices (inflation) is of independent interest in the
macroeconomy.
- Inflation is just the percentage growth rate in prices.
66
Prices as Measurement
• Measures macro prices of goods and services through “price indices”
• Price Indices track the relative change in the prices for a “basket” of many
goods (intended to representative of all goods) compared to the same basket of
goods in a “base year”.
• The base year is the anchor for the price index and all subsequent price indices
are relative to the base year.
• GDP Deflator (one prominent price index):
Value of Current Output at Current Prices /
Value of Current Output at Base Year Prices
• Another prominent price index is the CPI (consumer price index) – measures
price changes of consumer goods. I will often use the CPI as our measure67of a
price index in this class.
Example of Price Index Calculation (Continued)
• Nominal GDP is output valued at Current Prices
• Comparing Nominal GDPs over time can become problematic. Confuse
Changes in Output (production) with Changes in Prices
• Real GDP is output valued at some Constant Level of Prices (prices in a base
year).
Real GDP(t) = Nominal GDP(t) / Price Index (t)
• Growth in Real GDP:
% Δ in Real GDP = [Real GDP (t+1) - Real GDP (t)]/Real GDP (t)
or (approximately)
% Δ in Real GDP = % Δ in Nominal GDP - % Δ in P
• See Supplemental Notes 1 (Real vs. Nominal Variables) for examples.
68
Technical Notes on Price Indices
• Need to Pick a Basket of Goods (cannot measure all prices)
• ‘Ideal/Representative’ Basket of Goods Change Over Time
– Invention (Computers, Cell Phones, VCRs, DVDs).
– Quality Improvements (Anti-Lock Brakes)
• Criticism of Price Indices: Part of the Change in Prices Represents a Change in
Quality - Actually, not measuring the same goods in your basket over time.
• How do we account for “sales”?
• Additionally - technology advances drive down the price of ‘same’ goods over
time.
69
Technical Notes on Price Indices
• Boskin Report (1996) Concludes that CPI Overstates Inflation by 1.1% per
year.
• Overstating Inflation means understated Real GDP increases - makes it appear
that the U.S. Economy has Grown Slower Over Time. (Same for Stock Market,
Housing Prices, Wages - any Nominal Measure).
• Measures to Get Around Problems with CPI - Chain Weighting
– Read Text to get a sense of chain weighting.
• Read Course Pack Readings: 18 (difficulty measuring prices)
70
Technical Notes on Price Indices
• Which is better: Real or Nominal?
– In this class, we will focus on the ‘Real’! We are trying to measure changes
in production, expenditures, income, standard of livings, etc. We will
separately focus on the changes in prices.
– From now on, both in the analytical portions and the data portions of the
course, we will assume everything is real unless otherwise told.
• ie, Y = Real GDP, C = Real Consumption, G = Real Government
Purchases, etc...
71
Recessions and Inflation in U.S. Over Last 40 Years
72
What is a Recession?
• “Official Rule of Thumb” - 2 or more quarters of negative real GDP growth
• Most Economies are usually not in recession
– U.S. average postwar expansion: 50 months
– U.S. average postwar recession: 11 months
– Previous Recession: 19 months (December 2007 – June 2009)
– Previous Expansion: 71 months (January 2002 - November 2007)
– The 1990s experienced the longest expansion since 1850 (the second longest was
106 months ; 1961-1969)
– For Information on Business Cycle Dates see: http://www.nber.org/cycles.html
73
A Look at U.S. Nominal GDP: 1970Q1 – 2011Q3
74
A Look at U.S. Inflation: 1970Q1 – 2011Q11
75
A Look at U.S. Real GDP: 1970Q1 – 2011Q3
76
Real GDP and Inflation Over the Last Three Decades?
High or Rising Inflation:
73-75
79-80
07-08
Low or Falling Inflation:
81-83
90-91
96-00 (sustained)
01-02
High Growth in GDP:
83-86
96-00 (sustained)
Negative Growth in GDP:
74-75
79-80
81-83
08-09
90-91
01-02
08-09
1) Sometimes Negative Growth in GDP and Rising Inflation (70s)
2) Sometimes Negative Growth in GDP and Falling Inflation (80s and 90s)
Need Theory to Explain Both Sets of Facts!!!!
77
More On Recessions
Dates
2/61 - 11/69
12/69 - 10/70
11/70 - 10/73
11/73 - 2/75
3/75 - 12/79
1/80 - 6/80
7/80 - 6/81
7/81 - 10/82
11/82 - 6/90
7/90 - 2/91
3/91 - 3/01
4/01 - 12/01
1/02 - 11/07
12/07 - 6/09
7/09 - current
Expansion
Recessions
Expansion
Recession
Expansion
Recession
Expansion
Recession
Expansion
Recession
Expansion
Recession
Expansion
Recession
Expansion
Length
106 months
11 months
36 months
16 months
58 months
6 months
12 months
16 months
92 months
8 months
121 months
8 months
71 months
19 months
30 months
78
Great Moderation?
Dates
2/61 - 11/69
12/69 - 10/70
11/70 - 10/73
11/73 - 2/75
3/75 - 12/79
1/80 - 6/80
7/80 - 6/81
7/81 - 10/82
11/82 - 6/90
7/90 - 2/91
3/91 - 3/01
4/01 - 12/01
1/02 - 11/07
12/07 - 6/09
7/09 - current
Expansion
Recessions
Expansion
Recession
Expansion
Recession
Expansion
Recession
Expansion
Recession
Expansion
Recession
Expansion
Recession
Expansion
Length
106 months
11 months
36 months
16 months
58 months
6 months
12 months
16 months
92 months
8 months
121 months
8 months
71 months
19 months
30 months
49 months of recession in
21 years (1961-1982)
The Great Moderation
16 months of recession in
24 years (1982-2007)
79
Great Moderation! - Analysis of Real GDP (Up Through 2007)
•
•
•
Recessions have become less frequent
Recent recessions are much less severe than previous recessions
Even the expansions are more stable
80
Is the Great Moderation Dead?
• I do not think so….
My interpretation:
Great Moderation refers to the fact that the economy is better at minimizing the
impact of any given shock now relative to 30 years ago.
It does not mean that:
There will not be bad shocks
There will not be “new” shocks
Why?
The economy is more flexible (inventory management, credit)
We have gotten better at conducting macroeconomic policy!
81
Foreshadowing the rest of the course
• Assume aggregate demand (drawn in {Y,P} space) slopes down
I will prove this to you later in the course
• Assume short run aggregate supply (drawn in {Y,P} space) slopes up
I will prove this to you later in the course
I will also distinguish between short run and long run aggregate supply
82
Foreshadowing the Rest of the Course: Demand Shocks
The relationship between inflation and output when aggregate demand shifts:
Suppose we are in long run equilibrium at point (a) (AD = SRAS = LRAS)
Long Run AS
Short Run AS
P
P
P’
a
b
AD’
AD
Y
Y’ Y*
If the economy receives a negative aggregate demand shock, short run equilibrium
will move from point (a) to point (b). Output will fall (from Y* to Y’). Prices will fall
(from P to P’).
Demand shocks cause prices and output to move in the same direction.
(You should be able to illustrate a positive demand shock)
83
Foreshadowing the Rest of the Course: Supply Shocks
The relationship between inflation and output when aggregate supply shifts:
Suppose we are in long run equilibrium at point (a) (AD = SRAS = LRAS)
Short Run AS’’
Long Run AS
P
P’’
Short Run AS
c
a
P
AD’
AD’’
Y’’
Y*
AD
Y
If the economy receives a negative short run aggregate supply shock, short run equilibrium
will move from point (a) to point (c). Output will fall (from Y* to Y’’). Prices will rise
(from P to P’’).
Supply shocks cause prices and output to move in opposite directions.
(You should be able to illustrate a positive supply shock)
84
Business Cycles vs. Long Run Growth
85
Macroeconomic Goals
Promote Economic Growth
Minimize uncertainty
Minimize distortions in the economy (create level playing field)
Create incentives for efficient economic transactions
Maximize “trend” growth
Promote Economic Stability
Keep the unemployment rate low
Keep inflation in check
Refer to this as managing “business cycles” – minimize the deviations (cycles) around
the trend.
Lower uncertainty leads to greater economic activity
86
Why We Care About Inflation
87
Interest Rates
i0,1
=
the nominal interest rate between periods 0 and 1
(the nominal return on the asset)
πe0,1 =
the expected inflation rate between periods 0 and 1
re0,1 =
the expected real interest rate between periods 0 and 1
Definitions
re0,1 = i0,1 - πe0,1 (or i0,1 = πe0,1 + re0,1)
ra0,1 = i0,1 - πa0,1 (or i0,1 = πa0,1 + ra0,1)
where ra and πa are the actual real interest rate and inflation
88
Interest Rate Notes
• The Formula given is approximate. The approximation is less accurate the
higher the levels of inflation and nominal interest rates. The exact formula is re
= (1 + i) / (1 + лe) - 1
• Central Banks are very interested in r since it may affect the savings decisions
of households and definitely affects the investment decisions of firms. The
press talks about Central Banks setting i, but the Central Banks are really trying
to set r.
• 3 easy ways of measuring expected inflation:
– Recent actual inflation (see http://www.clev.frb.org).
– Survey of forecasters (see http://www.phil.frb.org/econ/liv/welcom.html).
– Interest rate spread on nominal vs. inflation-indexed securities (WSJ).
• See http://www.phil.frb.org/econ/spf/spfpage.html for other macro forecasts
89
Why We Care About Inflation
• Note: We will have a whole lecture on this later in the course
• Inflation is Unpredictable
• Indexing Costs (even if you know the inflation rate - you have to deal with it).
• Menu Costs (have have to go and re-price everything)
• Shoe-Leather Costs (you want to hold less cash - have to go to the bank more
often).
• Caveat: There may be some benefits to small inflation rates - more on this later.
90
Why We Care About Inflation
• An Example of how inflation can affect real returns.
• Suppose we agree that a real rate of 0.05 over the next year is fair.
– borrowing rate, salary growth rate, etc.
• Suppose we also agree that expected inflation over the next year is 0.07.
• We should then set the nominal return equal to 0.12 (i = re + лe)
Summary:
i = 0.12
re = 0.05
лe = 0.07
91
Why We Care About Inflation
• Suppose that actual inflation is 0.10 (лa > лe)
In this case, ra = 0.02 (ra = i - лa)
Borrowers/Firms are better off
Lenders/Workers worse off
• Suppose that actual inflation is 0.03 (лa < лe)
In this case, ra = 0.09 (ra = i - лa)
Borrowers/Firms are worse off
Lenders/Workers better off
It has been shown that higher inflation rates are correlated with more variability.
People/Firms Don’t Like the Uncertainty
92
Bonus: Understanding Housing Markets
93
Average Annual Real Price Growth By US State
State
AK
AL
AR
AZ
CA
CO
CT
DC
DE
FL
GA
HI
IA
ID
IL
IN
1980-2000
-0.001
0.000
-0.009
-0.002
0.012
0.012
0.012
0.010
0.011
-0.002
0.008
0.004
-0.001
-0.001
0.010
0.002
2000-2007 2000-10
0.041
0.021
0.024
0.012
0.023
0.006
0.061
0.008
0.066
0.021
0.012
0.002
0.044
0.018
0.081
0.045
0.053
0.022
0.068
0.016
0.019
-0.003
0.074
0.036
0.012
0.001
0.047
0.012
0.030
0.004
0.020
-0.010
State
MT
NC
ND
NE
NH
NJ
NM
NV
NY
OH
OK
OR
PA
RI
SC
SD
1980-2000
0.003
0.008
-0.010
-0.002
0.014
0.015
-0.002
-0.005
0.020
0.003
-0.019
0.009
0.008
0.017
0.007
0.002
2000-2007 2000-2010
0.049
0.024
0.022
0.004
0.033
0.018
0.007
-0.004
0.041
0.015
0.058
0.027
0.043
0.016
0.060
-0.006
0.051
0.024
-0.001
-0.013
0.019
0.007
0.051
0.016
0.042
0.018
0.059
0.027
0.025
0.014
0.025
0.010
94
Average
0.011
0.036
0.012
Average Annual Real Price Growth By US State
State
AK
AL
AR
AZ
CA
CO
CT
DC
DE
FL
GA
HI
IA
ID
IL
IN
1980-2000
-0.001
0.000
-0.009
-0.002
0.012
0.012
0.012
0.010
0.011
-0.002
0.008
0.004
-0.001
-0.001
0.010
0.002
2000-2007 2000-10
0.041
0.021
0.024
0.012
0.023
0.006
0.061
0.008
0.066
0.021
0.012
0.002
0.044
0.018
0.081
0.045
0.053
0.022
0.068
0.016
0.019
-0.003
0.074
0.036
0.012
0.001
0.047
0.012
0.030
0.004
0.020
-0.010
State
MT
NC
ND
NE
NH
NJ
NM
NV
NY
OH
OK
OR
PA
RI
SC
SD
1980-2000
0.003
0.008
-0.010
-0.002
0.014
0.015
-0.002
-0.005
0.020
0.003
-0.019
0.009
0.008
0.017
0.007
0.002
2000-2007 2000-2010
0.049
0.024
0.022
0.004
0.033
0.018
0.007
-0.004
0.041
0.015
0.058
0.027
0.043
0.016
0.060
-0.006
0.051
0.024
-0.001
-0.013
0.019
0.007
0.051
0.016
0.042
0.018
0.059
0.027
0.025
0.014
0.025
0.010
95
Average
0.011
0.036
0.012
Average Annual Real Price Growth By US State
State
AK
AL
AR
AZ
CA
CO
CT
DC
DE
FL
GA
HI
IA
ID
IL
IN
1980-2000
-0.001
0.000
-0.009
-0.002
0.012
0.012
0.012
0.010
0.011
-0.002
0.008
0.004
-0.001
-0.001
0.010
0.002
2000-2007 2000-10
0.041
0.021
0.024
0.012
0.023
0.006
0.061
0.008
0.066
0.021
0.012
0.002
0.044
0.018
0.081
0.045
0.053
0.022
0.068
0.016
0.019
-0.003
0.074
0.036
0.012
0.001
0.047
0.012
0.030
0.004
0.020
-0.010
State
MT
NC
ND
NE
NH
NJ
NM
NV
NY
OH
OK
OR
PA
RI
SC
SD
1980-2000
0.003
0.008
-0.010
-0.002
0.014
0.015
-0.002
-0.005
0.020
0.003
-0.019
0.009
0.008
0.017
0.007
0.002
2000-2007 2000-2010
0.049
0.024
0.022
0.004
0.033
0.018
0.007
-0.004
0.041
0.015
0.058
0.027
0.043
0.016
0.060
-0.006
0.051
0.024
-0.001
-0.013
0.019
0.007
0.051
0.016
0.042
0.018
0.059
0.027
0.025
0.014
0.025
0.010
96
Average
0.011
0.036
0.012
Average Annual Real Price Growth By US State
State
AK
AL
AR
AZ
CA
CO
CT
DC
DE
FL
GA
HI
IA
ID
IL
IN
1980-2000
-0.001
0.000
-0.009
-0.002
0.012
0.012
0.012
0.010
0.011
-0.002
0.008
0.004
-0.001
-0.001
0.010
0.002
2000-2007 2000-10
0.041
0.021
0.024
0.012
0.023
0.006
0.061
0.008
0.066
0.021
0.012
0.002
0.044
0.018
0.081
0.045
0.053
0.022
0.068
0.016
0.019
-0.003
0.074
0.036
0.012
0.001
0.047
0.012
0.030
0.004
0.020
-0.010
State
MT
NC
ND
NE
NH
NJ
NM
NV
NY
OH
OK
OR
PA
RI
SC
SD
1980-2000
0.003
0.008
-0.010
-0.002
0.014
0.015
-0.002
-0.005
0.020
0.003
-0.019
0.009
0.008
0.017
0.007
0.002
2000-2007 2000-2010
0.049
0.024
0.022
0.004
0.033
0.018
0.007
-0.004
0.041
0.015
0.058
0.027
0.043
0.016
0.060
-0.006
0.051
0.024
-0.001
-0.013
0.019
0.007
0.051
0.016
0.042
0.018
0.059
0.027
0.025
0.014
0.025
0.010
97
Average
0.011
0.036
0.012
Typical “Country” Cycle (US – FHFA Data)
10.0%
U.S. Real House Price Appreciation: 1976Q1 – 2010Q2
8.0%
6.0%
4.0%
2.0%
-2.0%
1976
1977
1978
1979
1981
1982
1983
1984
1986
1987
1988
1989
1991
1992
1993
1994
1996
1997
1998
1999
2001
2002
2003
2004
2006
2007
2008
2009
0.0%
-4.0%
-6.0%
-8.0%
-10.0%
-12.0%
98
Typical “Local” Cycle: New York
New York: Annual Real House Price Growth (in Percent)
20.0%
15.0%
10.0%
5.0%
0.0%
-5.0%
-10.0%
99
Typical “Local” Cycle: California
California: Annual Real House Price Growth (in Percent)
20.0%
10.0%
0.0%
-10.0%
-20.0%
-30.0%
100
Average Annual Real Price Growth By OECD Country
Country
1970-1999
2000-2006
Country
1970-1999
2000-2006
U.S.
Japan
Germany
France
Great Britain
Italy
Canada
Spain
Australia
0.012
0.010
0.001
0.010
0.022
0.012
0.013
0.019
0.015
0.055
-0.045
-0.029
0.075
0.068
0.051
0.060
0.081
0.065
Netherlands
Belgium
Sweden
Switzerland
Denmark
Norway
Finland
New Zealand
Ireland
0.023
0.019
-0.002
0.000
0.011
0.012
0.009
0.014
0.022
0.027
0.064
0.059
0.019
0.065
0.047
0.040
0.080
0.059
1970-1999
2000-2006
0.012
0.046
Average
101
Country Cycles – The U.S. is Not Alone
Real House Price Growth
Italy: 1978 - 2006
0.250
0.200
0.150
0.100
0.050
0.000
-0.050
-0.100
-0.150
102
Country Cycles – The U.S. is Not Alone
Real House Price Growth
Japan: 1978 - 2006
0.120
0.100
0.080
0.060
0.040
0.020
0.000
-0.020
-0.040
-0.060
-0.080
103
Equilibrium in Housing Markets
Fixed Supply (Short Run)
PH
Demand
QH
104
Equilibrium in Housing Markets
Fixed Supply (Short Run)
PH’
PH
Demand
QH
105
Equilibrium in Housing Markets
Fixed Supply (Short Run)
PH’
PH
Demand
QH
Demand shocks cause large price increases when supply is fixed
106
Equilibrium in Housing Markets
Fixed Supply
Supply Eventually Adjusts
PH’
PH”
PH
Demand
QH
107
Why Do House Prices Cycle?
•
Supply and demand forces.
•
When demand increases (increasing prices), supply
eventually adjusts (build more houses).
•
The increase in housing supply moderates price growth.
•
Housing supply – in the long run – is very elastic (convert
old properties, build on vacant land, create new cities,
etc.).
108
1976
1977
1978
1979
1981
1982
1983
1984
1986
1987
1988
1989
1991
1992
1993
1994
1996
1997
1998
1999
2001
2002
2003
2004
2006
2007
2008
2009
U.S Quarterly Housing Starts (in 1,000s)
550
450
350
250
150
50
109
Housing Market: U.S.
FHFA Index Starting in 1997: Actual Data vs 1% Growth Trend
110